LAMMPS Users Manual

1 Feb 2014 version

http://lammps.sandia.gov - Sandia National Laboratories
Copyright (2003) Sandia Corporation. This software and manual is distributed under the GNU General Public License.

LAMMPS Users Manual

Table of Contents

LAMMPS DOCUMENEALION. . ..cuvitieereientenieetenteeteeitete sttt et sttt ste bt et ete st ebe et stesetestentesbeessensesbesbeensensene 1
1 FED 2014 VETSION. ¢..cutitiiieeitiiinieeit ettt ettt ettt sttt st ettt st e sbe bt et et sbesbe et e b s bt ebeensenne e 1
VETSION 0.ttt ettt et et sa ettt st ettt s be et ettt nenaenaes 1

L INEEOAUCHION. ...ttt sttt ettt st e b e bt e et ettt ebe et e b s beebee s e b e 4
1.1 What is LAMMPS ..ottt sttt sttt nae e 4

1.2 LAMMPS fEATUTES.vevieieeiieiiniieitetenit ettt ae bt st e st sbe et eae b 5
GENETAL fEALUTES. ... eetitieiietinie ettt ettt et et ae ettt sttt s be e et e bt eeee s e naenaes 5
Particle and MOAE] Y PES......ccuieiiiiiiieett ettt ettt ettt et b et ae e 5
FOTCE FIRLAS. ... ettt ettt sttt st b e sttt et e e s 5
ATOIN CTEALION ...ttt ettt et sttt et b e sb bttt ebe et et sb e bt et e bt sbeestebesbeebeente bt eaeennenaenaes 6
Ensembles, constraints, and boundary CONitions............cc.eerueerieenienieniienieeenie et 6
TIEEZTALOTS. ..ottt ettt ettt et e et esbb e e sab e e sab e e eabeeebaeenabeenabeenatees 7
DIAGNOSTICS -ttt ettt ettt ettt et et e e bt e bt e bt e bt e bt e bt e be e bt e bt e bt e be e beebeenee 7
OULPUL. ..ttt ettt ettt s e et e ettt e bt e e bt e e sb bt e sb b e e sbbeesabeeeabeeenbbeenbbeenbbeesabeesabeesabeeans 7
MUlti-replica MOAEISooiiiiiiie et ettt ettt et e b e bt b e bt ebeebe e 7
Pre- and POSE-PrOCESSINZeeuvteieeieeie ettt ettt ettt ettt et et et e bt e bt e bt e bt e bt ebe e bt enbeebeeseenee 7
SPECIAlIZEA TEALUTES. ...c..eeiuiiiiiteiie ettt ettt ettt et ettt ettt e e et e eateeaeeeaees 7

1.3 LAMMPS NON-{EALUTEScovventiiieieeieniieiteteiesieetee sttt sttt sttt et sbe bt naesre e 8

1.4 Open Source diStriDULION........couirutrtirtirirteteterieeteteste ettt sbe et sre bt naesae e 9

1.5 Acknowledgments and CItAtIONS.ccueeueriieiieie ettt ettt ettt ettt sitesaee e e 10

2. GOEING STATEEA ...ttt ettt ettt et e e et e s et e ea e e atesabesatesatesatesatesaeesntesaeesnnens 12
2.1 What's in the LAMMPS diStriDUtION.c..coeeiiriiniiieiiniinieiccseseeee st 12
2.2 Making LAMMPS ...ttt ettt st st 13

2.3 Making LAMMPS with optional packages...........ccccecueriririenininieenienicneeene et 19

2.4 Building LAMMPS via the MaKe.pY SCIIPL.....cccuiiuiriiiiieieeieeie ettt 22

2.5 Building LAMMPS a8 @ IIDIATY.......cooouiiiiiiieiieee et 23
2.6 Running LAMMPS ...ttt ettt sttt 24

2.7 CommMAaNd-1INE OPLIONSeiutieuiieiitiite ettt ettt ettt e et e et e et e it e satesatesateeatesaeeenaesaaesaeesneeeas 26

2.8 LAMMPS SCIEEIN OULPUL......teeueiieiiieniiiesiiteette et ettt ettt e st e st e sabeeesbee ettt e sbteesmbeesmteesabeeenbeeennees 30

2.9 Tips for users of previous LAMMPS VEISIONS.......ccccceriririerierinieienienienieeienie e 31

3 COMIMANGS ...ttt ettt s e st e e et e st e st e sanesan e e e e s anesanesanesane e 32
3.1 LAMMPS I0PULE SCIIPL 1t tutteuiteiiieiieeiie ettt ettt ettt sttt ettt st e sate st e sateeseesinesaeesaaeeas 32
3.2 ParSING TUIBS ...ttt ettt et e e et et s it sateeatesateeaeeeaeesanesaaesaeeeas 33

3.3 TNPUL SCTIPE SEIUCTUTR. ...ttt ettt ettt et ettt ettt et satesatesateeateeatesatesaeesatesateeaeessaesanesanesneenas 34
3.4 Commands [iStEd DY CAtBZOTY......ueruuiiiiiiieiiieiit ettt ettt ettt sttt s saae s 35

3.5 Individual COMMANGS.....c..erueiiiriiriirieiene ettt ettt sttt sr st besbe et b e ene 36
IR SEY @Sttt ettt ettt ettt et ettt et e et et et e e bt et ebe et s 37
COMPULE SEYLES ..ttt et e bt e e sab e sttt st eebeeenbbeesabeesabeeeane 37
Pair_SEYLE POLENTIALS.....coueiiiiieieee ettt ettt ettt ettt ettt ettt an 38
BONd_StYIe POtENTIALSeeutiiiiiiie ettt ettt et e 40
ANGLE_STYIE POLENTIALS ..ottt ettt et ettt ettt et et eaee s 40
Dihedral_Style POLENLIAlS.eouiiiiiiieiieie ettt et ettt ettt ettt et ettt 41
IMProper_style POtENTIALS.c.ueiiiiieeie ettt et ettt 41
KISPACE SOLVETS. ..ttt et ettt e st e st e sabeeebeeenbees 41

A PaACKAZES. ¢ttt ettt e b e s bt e s bt e et e e b et ebaeenbbeesabee s 43
4.1 Standard PACKAESueiiiiieeie ettt ettt ettt ettt ettt et et s 43
4.2 USET PACKAZES. ... uteeueieite ettt ettt ettt ettt et et e e bt e bt e beenbeenaeentean 44

USER-MISC PACKAZE.ceuteeuieeiieeie ettt et ettt ettt ettt ettt e eaeenee s 45

LAMMPS Users Manual

Table of Contents

USER-ATC PACKAZE. ...ttt ettt ettt ettt ettt ettt et e beembeeaeentean 46
USER-AWPMD PACKAZE. ...cueeeuteeiieeiteie ettt ettt ettt ettt ettt ettt ettt et e e enee s 46
USER-COLVARS PACKAZE. ...ccuteeuteeieiiieieetee ettt ettt ettt ettt ettt ettt eae s 46
USER-CG-CMM PACKAZE.eeueeemieeieeieete ettt ettt ettt ettt ettt et te e bt e beebe et eaeeneeas 47
USER-CUDA PACKAZE. ... ettt ettt ettt et ettt ettt et ettt ettt e nte e bt ebeeabeenbeenaeeneeas 47
USER-EFF PACKAZE. ...ttt ettt ettt ettt ettt et et ettt e e et s 48
USER-OMP DACKAZE. ...cueeeiiiiiiiiieiiie ittt ettt ettt st sttt e e bt esabeesabeeeane 48
USER-REAXC PACKAZE. ...ceuttteitieiiieiiie ettt sttt ettt et sttt sttt et e e bt e e sabeesabeesane 48
USER-SPH PACKAZE....c..eoueiiiiiiiiiiiietieetetet ettt ettt sttt s 49
5. Accelerating LAMMPS Performance.cocueeuiiiiiiieiieieeeeie ettt 50
5.1 Measuring PEITOITNANCE.ceuteiieiieieete ettt ettt ettt ettt et ettt et e e eabeebeeabeenbeenaeeneean 50
5.2 GENETAL SITALBEICSveeuteeuteeieeeie ettt ettt ettt ettt ettt e bt et e e bt e bt ea b e enteeabeeabeenbeenbeenneeneean 51
5.3 Packages with OptimizZed SEYIES......ccueeuieiiiiiiie ettt e 52
5.4 OPT PACKAZE. ...ttt ettt et ettt et ettt et e bt et e eaeentean 53
5.5 USER-OMP PACKAZE.....c.ueeeutieuiieiieie ettt ettt ettt ettt ettt et e e s 53
5.0 GPU PACKAZE.....ceueeeeieieee ettt ettt ettt ettt ettt et enae et s 55
5.7 USER-CUDA PACKAZE......couetiuiiiiiiiiete ettt ettt ettt ettt et ettt et enee s 57
5.8 Comparison of GPU and USER-CUDA packages...........cocceceeruenirieienineeienienieneeeeniesieeeens 59
6. HOW-L0 QISCUSSIONS ..utitiiieuteierieeitetente ettt ettt ettt ettt et et sa et e et e ebe et e s bt sbeesaeaeebeeeeeste et eaeennen 61
6.1 Restarting @ SIMUIATION.c...eoiiiiiiii ittt ettt st s saaesaae s 61
6.2 2d SIMUIALIONS. c..c.eveiieiientisteetee sttt et ettt ettt sttt b ebe et enbesbeebeesbenbeebeene 63
6.3 CHARMM, AMBER, and DREIDING force fields..........cccceeerimirnenininieninenecicienceene 63
6.4 Running multiple simulations from one iNPUt SCIIPL........eerviriiiiiriiiie e 64
6.5 Multi-replica STMUIATIONS.cc..iiiiiiiiie ettt et ettt st saae s eae 66
6.6 Granular MOAEIScoveiiriririee ettt ettt et sb st sb e sbe e be b b ene 66
6.7 TIP3P Watel MOTEL.....cc.eitiriiiiiiiriiiieee ettt ettt sttt b e st ene 67
6.8 TIPAP Water MOUEL.....ccuiitiriiiiiiiitiiietee ettt ettt st b e s be e ene 68
6.9 SPC Water MOAEL......c.cooiiiiiiiiiiiiiiteee ettt bttt 70
6.10 Coupling LAMMPS t0 Other COAES.couiruiiiiiiiiiiieie ettt 70
6.11 Visualizing LAMMPS SNaPShOLS.......cooiiiiiiiieieeie et 71
6.12 Triclinic (non-orthogonal) siMulation DOXES..........cccueriiriiiiiiiiiiie e 72
6.13 NEMD SIMUIALONS. ..ottt sttt ettt ettt sttt sbesbe e etesbe e ene 76
6.14 Finite-size spherical and aspherical particles..........ccoooiiiiiiiiiiiie e 76
6.15 Output from LAMMPS (thermo, dumps, computes, fixes, variables)...........cccccecuervuerienncnne 80
6.16 Thermostatting, barostatting, and computing teMPETatUre.............ceouerueruerierienieriesieeeenne 84
0. 17 WALLS....oiiiiiiieiieitet ettt et ettt b et e sb ettt bttt b e sh et be et enee 86
6.18 ElAStiC COMSLANLSccuteutitiriieiietirteeitetente sttt ettt ettt et et saesbt s et st ebe e s e st e sbeebaenbenbeeaeene 87
6.19 Library interface to LAMMPS.........cccooiiiiiiiiietccrteee et 88
6.20 Calculating thermal CONAUCTIVILY......cc.coirerieriinieieientirtetetese ettt 89
6.21 CalCulating VISCOSILY. .. .evverueeureierieritetente ettt ettt sttt et ettt sttt sbe bt et et sbeebeentenbeebeenee 90
7. EXQMPLE PIODIEIINS. . .ceeiiiriiiiiiiiiieit ettt sttt ettt ettt sa e sttt st s 93
8. Performance & SCalability........ccc.cvirieiiriiniiieienereeeeee ettt 95
9. AddItIONAL TOOIS...c..eueeiiiiiitieiteteeet ettt sttt sttt sttt s 96
AMDET2IMP LOOL...eeiiiiiieiieiirte ettt sttt ettt b e sb et et 97
DINATY2EXE EOOL. . etiiiiiiiieete ettt ettt et ettt b e sttt st a e eanen 97
Ch2IMIP TOOL ..ttt st b e sttt b e ebe b e sbesbe et entesbeeneens 97
CRAII EOOL. ...ttt ettt et st ebt et bt bttt b e b e nbesbe et entesbeebeens 97
CTEALEALOINS LOOL...e.uteutiiiriieititi ettt ettt ettt ettt ettt be et et sb e e et bt ebe e b e nbesbeeasentesaeeneens 97

LAMMPS Users Manual

Table of Contents

data2XMOVIE TOOL..c..eeuiiiiiieiiiiiiteetctete ettt ettt sttt ettt ettt b et sb e sbe et et saeeaeens 98
€am database LOOL.....c..couiiiiiiiiiiieie ettt sttt s 98
€AIM ZENETALE TOOL. ..ottt et ettt et ettt 98
BEF LOOL. ettt bbbttt sheeaeen 98
EINACS TOOL. vttt ettt et ettt b ettt b et s h e ebe et bbb e et bt ebe ettt ae b e tesbeeaeens 98
PP TOOL ittt et bt b e e bttt b et b et be et sheebeens 98
KALE TOOL...eiie ettt et e 99
IMP2AIC TOOL....ceiiiiiieiie ettt ettt ettt et et et 99
IMP2CEZ LOOL ettt sttt ettt a ettt eaeen 99
IMP2VINA EOOL...c.tiiiiiitiierieeiiee ettt ettt sttt ettt b ettt b e bbbt st e st saeebeens 99
INALIAD TOOL. ... ettt sttt ettt b et nr ettt saeeaeens 99
IECEILE2A LOOL....c.iiieitiiirieect ettt sttt b e ettt b et ea e bttt et saeeaeens 99
MOIEMPIALE TOOL. ... ettt ettt sttt et esbt e s bt e sbeesbeesbeesbeenis 100
100 122 U1 01 o R 0T) AU USSR 100
PRONON EOOL.... .ttt ettt et et ettt e it e st e et e sateesteenteeatesaneens 100
POLYMET DONAING LOOL......eiiiiiiiiiiie ettt ettt st eate e 100
PYMOL_ASPRETE TOOL. .. .iiiiiiiiiiiiiii ettt et et s 100
PYTRON COO0L ..ttt ettt ettt et e st e e et e bt e e baeesabeesabee s 101
TEAX TOOL .ttt sttt b e ettt b et h e bbbt e he e b ettt et et sheeaeen 101
TESLATt2dAtA LOOL. .. e oueiiiiiieiieit ettt ettt sttt sttt b e s ettt saeeaeen 101
VAL EOOL .ttt sttt bbbttt sa ettt et et be e enee 102
b 101 - Lo (010) F USRS U RS RRUR 102
XIMOVIE EOOL ...ttt ettt ettt et s h et b e sbe ettt be e bt et saesbe et e bt sbeeseenbenbeseeenee 102
10. Modifying & extending LAMMPS. ..ottt 103
TO.T ALOIN SEYIES..eeeitieiiieiiiie ettt ettt ettt e sat e st e st e st esabe e e bt e e nabeesbbeenabeesabeesabeeanne 104
10.2 Bond, angle, dihedral, improper potentials............ccceerierienienienierieree e 106
10.3 COMPULE SEYLES ..ttt ettt ettt ettt e bt e bt e bt e bt e bt e bt e sbeesbeesbeenbeenbeesbeesbeesbeenneenis 106
1O.4 DUIMD SEYLES...eeutieaiiiiiitieite ettt ettt ettt e sate e st e st e e bt e bt e sbbeesateesabeesabeeenne 107
10.5 Dump CUStOIM OULPUL OPTIOMS.vteutientietietietterteerteesteesteesteesbeesteesteesteesseenseesbeesseesseesseenseenns 107
TO.6 FIX SEYLES. .ttt ettt et e b e bt e bt e sb e et e s bt e bt e bt e bt e bt e bt e sbeesbeenneenis 107
10.7 Input SCIiPt COMMEANGS.....ccueetiriiriieiitintietetenteett ettt ettt ettt ebe e eae et saeeanen 109
10.8 KSPACE COMPULALIONS.eeutieutietieteetienttesteettenteeste e bt esteesbeesbeesbeesteesbeesbeenseenbeesbeesseesseenneenns 110
10.9 MINIMIZAtION SEYIES ...cuviiteiiiiiiniieiieieeee ettt sttt sttt eenes 110
10.10 PairwiSe POENTIALS. ...ccuveeutietieiietiett ettt ettt ettt et et e bt et e bt e bt e bt e sbeesbeesaeennis 110
TO.TT REZION SEYLES ...eeutieiieiteiee ettt ettt ettt sb et e bt e st e bt e b e b et e e bt e sbeesbeenneennis 111
TO.TT BOAY SEYLES .ttt ettt ettt e bt e b e e bt e bt e sbe e bt e bt e bt e sbeesbeesbeenneenis 111
10.13 Thermodynamic OULPUL OPLIOMS. ...cc..eeteertiertieteerteenteenieenteenteesteesteesteesteesbeesbeesbeesbeesseesneennes 111
10.14 Variable OPLIONS.....c.eeuieiieiietieteete ettt ettt ettt et e bt e bt e sbeesbeesbee bt enbeesbeesbeesbeesseennis 112
10.15 Submitting new features for inclusion in LAMMPS........ccccoiiiiiiiiieeeeee 112
11. Python interface to LAMMPS ...ttt 114
11.1 Building LAMMPS as a shared lbrary..........cc.ccooeerieiiiniinieneeeeeeeee e 115
11.2 Installing the Python wrapper into Python. ..o 115
11.3 Extending Python with MPI to run in parallel...........ccccoooiiiiiinineee 116
11.4 Testing the Python-LAMMPS Interface..........ccccevieiieiieiienienienieseeee e 117
11.5 Using LAMMPS from PythOm.......cc.coiiiiiiiiniiieieienenceneecetcese et 119
11.6 Example Python scripts that use LAMMPS........cocoiiiiiee e 122
T2 BITOTS. ittt et ettt et ettt et ettt e ae e bt et et a e sa e sae e e eae 124
12.1 COMMON PIODIEIMS ...ttt ettt ettt et et e st e bt e sbe e bt e sbeesbeesbee bt e bt esbeesbeesbeenbeens 124

LAMMPS Users Manual

Table of Contents

12.2 REPOITING DUZS ... e euteentietieitete ettt ettt ettt e b e sb e sb e e bt e bt e sbeesbe e bt e bt enbeenbeesbeesbeenneenis 125

12.3 EITOT & WAITNGZ MIESSAZES . uveeutrenteenteenteeteanteenteesteenteesueesseesseesseesseesseesseesseesseesseesseesseesseennes 125

BITOTS .ttt ettt s h ettt b bttt b e bt na ettt eb e bt e enee 126

WV ATTIIZS ettt sttt et sttt b e eat ettt b et be s b e bt et e bt e bt et et e ae et enaesaeeaeen 209
13, FULUIe ANd RISTOTY ... eeutieiiittet ettt ettt ettt e b e b e bt e bt e s bt e bt e bt e bt e bt e sbeenbeesaeenbeenis 217

13.1 COMING AtETACTIONS. . nteeuteeutienteetteteeteenteeteestee bt e bt esbeesbee bt e bt esbeesbeesbeenbeebeenbeenbeesbeesseenneenns 217

I3.2 PaSE VETSIOMNS ..ttt ettt ettt et ettt et et sttt s b et e st e bt sbe et e bt ebeeseentenbesaeennen 217
angle_style charmm COMMAN..........ccccoiiiiiiiiiniiniieeee ettt st 219
angle_style charmm/omp cOmMmMAand............ccecueriririeriininieieeneeteee ettt 219
angle_style class2 COMMANG.eoiuiiiiiiiiieei ettt ettt et ettt e b e sbe et e sbeesbeenbeenis 221
angle_style class2/0mp COMMEANC.........coouiiiieriiiiieiieiee ettt ettt ettt sb et e b e sbee b e neeeas 221
angle_Coeff COMMANA........cc.iiiiiiii ettt e bt e b e b e b e e bt e saeesbe e b eaes 223
angle_style COSINE COMMANC........coiuiiiiiiiiieete ettt et e bt e st e bt e b e b e bt e nbeesbeesbeeneeeais 225
angle_style coSine/omp COMMAN.cccutiiuieriieitieiieteet ettt ettt et ee bt et et e st esbee bt e sbeesaeesbeenaeeaes 225
angle_style cosine/delta COMMAN............cooueiiiiiiiiiiiieieeee ettt 227
angle_style cosine/delta/omp COMMANC........cc.ooiuiiiiiiriiiiieieie ettt 227
angle_style cosine/periodic COMMANA.ccueriririeriininieiene ettt ettt st sae e eaeens 229
angle_style cosine/periodic/omp COMMANA.........cceecveriiririeieninenterene ettt seesaeeaeens 229
angle_style cosine/shift COMMAN............coieiiiiiiiiiieeee ettt 231
angle_style cosine/shift/omp cOMMAaN...........ccoiiiiiiiiiiniiniieeee et 231
angle_style cosine/shift/exp cOmMMAand............coiieiuiiriiinienieiieie ettt et 233
angle_style cosine/shift/exp/omp cOMMANd..........cccoruiiriiriiiienieeieee et 233
angle_style cosine/squared COMMANA........c.ceiuieiiieriieriiiieeee ettt e e e 235
angle_style cosine/squared/omp COMMANC........cc.eeiuiiriiiriieniiiieiie ettt e e 235
angle_style dipole COMMANA..........cc.oiiuiiiiiiiieieeee ettt ettt sb et e e b e b e e as 237
angle_style dipole/omp COMMANC........cocuiiiiiiiiiieiiee ettt et e s seeeaes 237
angle_style fourier COMMANA...........cocueruiiirieiiiniii ettt ettt st sae s eaeens 239
angle_style fourier/omp COMMAN......c..ccceeieriiriiririerienieese ettt ettt sae e eaeens 239
angle_style fourier/simple COMMANA.........cc.eoiiiiiiiiiiieieee ettt 241
angle_style fourier/simple/omp COMMANC.........cc.eeiuiiriiiniienieiie e 241
angle_style harmonic COMMAN............coouiiiuiiiiiiiiieiiecee ettt ettt e e e e e as 243
angle_style harmonic/omp COMMANA........cc.eiiuiiiiiriieiieiieeee ettt ettt et e e e 243
angle_style hybrid cOmmMand............coceoiiiiiiiiiiee ettt 245
angle_Style NONE COMMEANM.......cocuiitiiiiiiiee ettt ettt et e e bt e bt et et e e bt e sbeesbeesbeenseenes 247
angle_style quartic COMMEAN............eoiuiiiuiiieeie ettt ettt ettt et et e bt e bt esbee bt e sbeesbeesbeenaeeaes 248
angle_style quartic/Omp COMMANA.......ccc.iiiiiiiiiriieiietiet ettt ettt et ettt e bt e b e sbeeseeesbeenaeeaes 248
angle_style SdK COMMANA.........cooiiiiiii ettt ettt e st e b e e 250
ANZle_SEYLE COMMEAN.......eiiiiiiiiii ettt b et b et e bt e bt e bt e bt e bt e sbeesbeesbeenseenas 251
angle_style table COMMAN........cc.oiiuiiiiiiie ettt et ettt e e e b e e as 253
angle_style table/omp COMMANC.........c.eiitiiiiiiieiieiece ettt sb et e b e e e ais 253
atom_mOdify COMMEAN.....c..eiiiiiiiiiietiee ettt ettt et e bt e bt e sbee bt e bt e sbeesaeesbeenseenas 256
ALOM_SEYIE COMMEAN.......eiiiiiiieie ettt ettt ettt et e bt e bt e bt e nb e e bt e sbeesbeesbeenseennis 259
balance COMMANG........co.eiiiiiiiiiiiiicreetee ettt sttt et sa sttt sae et ae b eaeenee 263
BOAY PATTICIES ...ttt ettt st b e s h e bt e s at e bt e bt e bt sheesate bt e et eas 267
bond_style class2 COMMEANA........cccuiiiiiiiiiiiii ettt ettt et ettt st e eesaae e eas 270
bond_style class2/0mp COMMANA.........c.eeiiiiiiiieiieie ettt te et sttt e saee e eas 270
DONA_COETT COMMEANG. ... oo e aaaaaeaes 272
bond_style fene COmMMAnd..........cocuoiiiiiiiiiiii ettt 274

LAMMPS Users Manual

Table of Contents

bond_style fene/omp COMMANA..........coouiiiiiiiiii ettt e 274
bond_style fene/expand COMMANA..........cccuiiiiiiiiiiiii ettt s 276
bond_style fene/expand/omp COMMANC..........ooouiiiiiiiiiiiiie ettt s 276
bond_style harmonic COMMANA..........cociiiiiiiiii ettt et 278
bond_style harmonic/omp COMMANG..........coouiiiiiiiiiiieieeie ettt ettt 278
bond_style harmonic/shift COMMANd..........c.cooiiiiiiiiiiiiiii e 280
bond_style harmonic/shift/omp command............cccooiiiiiiiiiiiiii e 280
bond_style harmonic/shift/cut command............ccccoooiiiiiiiiiii e 282
bond_style harmonic/shift/cut/omp cOmMmMAand............coceovueiiiiiiiiiiiiieee e 282
bond_style hybrid COMMANA.........c.coouiiiiiiiii ettt s 284
bond_style MOrse COMMEANA........c.cueiiiiiiiiiiii ettt ettt ettt eateeateeaeeeatesaeeeas 286
bond_style morse/0mp COMMANA.........c.eeiiiiiiiiiiieie ettt ettt et sttt et eeesaee e eas 286
bond_style NONE COMMANT..........oiiiiiiiiiiiii ettt ettt ettt st sttt et eaeesaee e eas 288
bond_style nonlinear COMMANA...........ocuiiiiiiiiiiii ettt sttt see s 289
bond_style nonlinear/omp COMMANd........cccoeetiriiririenienirietene ettt ettt ae e e ene 289
bond_style qUartic COMMANG...........coereeiiririeieiitt ettt sttt et ettt sttt et s eeeenesbeeaeene 291
bond_style quartic/omp COMMANT.........cceririeieriinirietenteneet ettt et sttt eeeeaesbeeaeene 291
bond_Style COMMANG......cceiiiiiiiiie ettt ettt ettt st e et e et eateeaeeeaeesaeeens 293
bond_style table COMMANG..........ooouiiiiiiiiii ettt et sttt et et 295
bond_style table/omp COMMANA........coeeotiriiririiriiriieieterereet ettt sttt s a e e 295
bouNdary COMMAN........couiriiiiiiiiiirieritetee ettt ettt ettt et e sa st e e e eetebe b eaeenee 298
DOX COMMEANT. ...c..eiuiiiiiieitetirteet ettt ettt et sb e bbbt bt b e na e sbe et eaesaeesaennenbeeaeenee 300
Cchange_bDOX COMMEANA........couiiiiiiiiii ettt sttt s bt e saeesbeesb e e sbee bt e saeesaee bt ens 301
ClEAT COMIMANG.......eertiiieeiiiiiete ettt ettt ettt e b sttt et ee et s bt ebe et e bt sbeesaebe s bt ebeenaenaeeaeennen 306
COMMUNICALE COMMAN....cuvieueeitetirtieitetenterteet et st et et et ebeeat et ebeeetetesaeebeessenbesbeessebenbeeseensenseaneennen 307
COMPULE COMMEANT.....cuiiiiiiiiiieiieie ittt ettt ettt saee s e s s b e s b e s b e saeesaeesaeesaeesaeenae 309
compute ackland/atom COMMANC...........oooiiiiiiiiiiii et st 313
compute angle/10cal COMMANC...........oiiiiiiiiiiii ettt e 315
compute atom/molecule COMMEANC........c.cuiiiiiiiiiiiii ettt st 317
compute basal/atom COMMANC..........ceueriiriririiieneeteene ettt ettt ettt sttt e eaenae e eanes 319
compute body/local COMMEANA...........oooiiiiiiiiiiie ettt st e 321
compute bond/local COMMEANA...........oiiiiiiiiiiiie ettt st e s e e as 323
compute centro/atom COMMEANG.........couiriirieriieieeite ettt et ee ettt testte st e steesttesbeesbeesbeesbeesaeesaeenaeees 325
compute cluster/atom COMMEANC........couiiiiiiiiiiie ettt sttt e saee bt e i e seeeas 327
compute cna/atom COMMEANC.........iiiiiiiiiieie ettt e sttesaeesbeesbtesbeesbeesaeesaeenaeees 328
COMPULE COM COMMANT ...ttt ettt ettt ettt ettt e st e s atesbee e bt e sbtesaeesbeesaeesbeesbeesbeesbeesbeesaeenneenns 330
compute com/molecule COMMANC.........cocuiiiiiiiiiiiie ettt 331
compute coNtact/atom COMMANGcc.ueruiirierieeieeite et eite et te et e st et eesttesttesbtesaeesbeesbeesbeesbeesaeesaeesneees 333
compute COOTd/atom COMMANT.uiiiiiiiriieiieeie ettt ettt e satesbtesaeesbeesbeesbeesbeesaeesaeesaeees 334
compute damage/atom COMMEANC...........oiiiiiiiiiiie ittt sttt e s e bt e i e seee s 336
compute dihedral/local cOMMANA..........cocueiiiiiiiiiiii e e 337
compute displace/atom COMMANC.ooiiiiiiiiiieiit ettt ettt et e st e bt e eseeeais 338
compute erotate/asphere COMMEAN............couiriiiiiiiiiie ettt sttt st e sbeesaeesaeeneeeas 340
compute erotate/rigid COMMANG..........cuiiiiiiiiiiiie ittt sttt sbeesbee bt e e e seeees 341
compute erotate/SPhere COMMAN..........ccuiiiiiiiiiiiii ettt esaee st e e ees 342
compute erotate/sphere/atom COMMANC..........coouiiiiiiiiiiiniieniee ettt et stee st eenbee e 343
compute event/displace COMMANG.........couiiiiiiiiiiiie ettt sttt sttt e et e e e e s 344
COMPULE Zroup/SrouP COMMANIeoiuiiiriiieriiiiiiie ettt ettt ettt et e et e e sbteesibeesateesabeesabeeenbeeenanes 345

LAMMPS Users Manual

Table of Contents

COMPULE ZYTAtION COMMEANL.......eiueiiiiiiiieiieetie ettt ettt e st e st e sateebtesbtesatesbeesaeesbeesbeesbeesbeesbeesaeenseenes 347
compute gyration/molecule COMMANd...........cocueriririiiiiiniiieteeeee e 349
compute heat/flux COMMANC..........coouiiiiiiiiie ettt st st seee s 351
compute improper/local COMMAN.........c.c.ooiiiiiiiiiiiie ettt st 355
compute inertia/molecule COMMAN..........cocuiiiiiiiiiiiie ettt 356
COMPULE K& COMMEANT.......eiiiiiiiiiiiiie ettt e st s bt e bt esbeesbeesaee bt e naeens 358
compute Ke/atom COMMANT........cceririeririririinienieeteene ettt ettt ettt sttt et sbe et b eaeenaenaeeaeeanes 359
compute ke/atom/eff COMMAN..............cooiiiiiiiiii et e e 360
compute ke/eff COMMAN...........ccciiiiiiiii et 362
compute Ke/rigid COMMANC........ccciiiiiiiiii ettt sttt e e e as 364
compute Mmeso_e/atom COMMEANG........eeerurierieiriieiiieeitteriteentee st et e ebeeesbeee sttt essbeesabeesabeesabeeenbeeenaees 365
compute meso_rho/atom COMMEAN.......c..iiiiiiiiiiiieie ettt st aee st e s e e s 366
compute MeSO_t/atom COMMANG........co.utriirierieeiieeiteette et teette et e st testtesbtesitesteesaeesbeesbeesbeesbeesaeesaeenneens 367
compute_mMOdify COMMEAN........c.cueiiiiiiiiiiie ettt ettt e st e s e e es 368
compute MSA COMIMEAN.......coutitiriiriieieterttreet ettt ettt et ettt ebe ettt sbeeseesbe bt ebeenaenaeeaeeanen 369
compute msd/molecule COMMAN..........c.cuoiiiiiiiiiiii et s 371
compute MSd/NONZAUSS COMMEANCL........eiruiiiiiiiiiieiie ettt st et e st e bt e sbeesbeesaeesaeeseeees 373
COMPULE PAIT COMIMANT.etiiiiieiie ittt ettt ese e eatesbee s bt e sbtesheesbeesueesbeesbeesbeesbeesbeesbeenseenns 375
compute pair/10cal COMMEAN.........cccuiiiiiiiiiiiie ettt sttt e et e i e e e ees 377
COMPULE P& COMMEANI....c.uiiiiiiiiiiiiiiii ettt st et sae e s sae e e s eae 379
compute pe/Cuda COMMEANT.........ccuiririerieririetete ettt ettt sttt et sttt estesbesbeeseesbesbeeaeensenaeeaeennen 379
COMPULE PE/ALOM COMMEANTeiiuiiiiiiieritieritie ettt ettt ettt ettt e et e et e ettt e sbbeesbbeesabeesabeesabeeenbeeenanes 381
COMPULE PreSSUIe COMIMANC.eiiutiiiiiienitieiiee ettt ettt e sttt et e e beeebeeesbbeesbbeesateesabeesabeeenbeeenanes 383
compute pressure/cuda COMMEAN..........eviiiiiiiiiiiiii ettt ettt ettt e st e bt e i e neeeas 383
compute property/atom COMMANC........cocueeruiiriiiiiiieiitenteertee ettt ettt et e st e saaeesbeeebeeenbeeenaees 385
compute property/local COMMAN..........couiiiiiiiiiiiiiie ettt st 387
compute property/molecule COMMAN...........cocueriririiiiiniiiiienie ettt 389
compute TAf COMMEANG.......couiriiiiiiiieietere ettt ettt ettt sbe et bbb e nae b eanes 390
CcOmMPULe TEAUCE COMMEANI.......eeueiiiriiriieientirie ettt ettt ettt ettt et e b st ebe et esbesbeesaenbesbeebeenaenaeeneennen 393
compute reduce/region COMMANG.........cc.eririrririerirteiene ettt sttt ettt esteste bt eseentesbeeseensenseeaeennes 393
COMPULE SIICE COMMEANC. ...c..iuieiiiiiiiieiietertereet ettt ettt ettt ettt et et sbe bbbt b e e nbeeaeeanen 396
compute Stress/atom COMMAN.........eeiiiriiriiriiiieree ettt sttt saee s e s e eae 398
COMPULE LEMP COMIMANIA. c...tiiitiiiniiteiieeritee ettt ettt ettt sbt e st e et e e abeeebeeesbteessbeesabeesabeesabeeenbeeenanes 401
compute temp/cuda COMMANG.......cc.eiiiiiiiiieeieeie ettt sttt e st esttesatesbeesbeesbeesbeesaeesaeesaeeaes 401
compute temp/asphere COMMAN...........couiiiiiiiiiiiie ettt saee st e i e e e ees 403
COMPULE LEMP/COM COMMEANG. ...cutrieiiieniiieritieeiie et ettt erttee sttt et e eabeeebee ettt e sttt estbeesabeesabeesabeeenbeeenaees 406
compute temp/deform COMMANG...........coiiiiiiiiiiiiie ettt st 408
compute temp/deform/eff comMmAand............ccoooiiiiiiiiiiiii e 410
compute temp/eff COMMANC...........ooiiiiiiii ettt st 411
compute temp/partial COMMANC.........cocuiiiiiiiiiii ettt st 413
compute temp/partial/cuda COMMANG.cccueiiiiiiiiiiiie et e 413
compute temp/profile COMMEAN..........cceiiiiiiiiiii et e 415
compute temp/ramp COMMANG........corutierrieriiiriieeiee ettt eentee st e et e ebee ettt esateessbeesateessbeesabeeenseeenanes 418
compute temMp/reZion COMMANC.........oouiiiiiieiiiiie ettt st et e st sbe e bt esbeesbeesaeesaeeseeenais 420
compute temp/region/eff COmMMANA...........coouiiiiiiiiiii e 422
compute temMp/rotate COMMANT.oiiiiiiiieiieeie ettt st e st esbtesaeesbeesbeesbeesbeesaeesaeenaeenaes 423
compute temp/SPhere COMMAN.........ccuiiiiiiiiiiiie ettt sttt e s esaee b e seeeas 425
COMPULE Tl COMIMANT. ...ttt sttt et e bt esb e e shtesbtesbtesbeesbeesbeesbeesbeesbeenneenns 427

Vi

LAMMPS Users Manual

Table of Contents

cOmMPULe VACE COMMANT. ...c..eoueiitiiiniieiteienterieet ettt ettt ettt ettt ettt sbe e et b ebeenaenaeeaeennes 429
compute VOronoi/atom COMMANC..........eiiiiiiiiiiiieiie ettt sttt sb et esaee i e neeenas 430
Create_atomMS COMIMANT........eeeeeeeeeieee e et e et e e e et e e e et e e e et e e e e eaeeeeeaaaeeeeaneeeeeanaseeeanaeeeeanns 433
CTEALE_DOX COMIMANI ..ottt e e e e e e e e et e e e e e e e e e e e e ea e e e e e e e e eeenaaaas 437
delete_atomS COMIMANG.iiiiiiiiiiieee et e ettt e e e e e e et e ta e eeeeeeeeaaaa e eeseseessssannnans 439
delete_ DONAS COMIMANG........oeieeeee et e e et e e e e e e e e e e e e e e et e e e eeaaeeeeeaaeeeeeanas 441
e N (S (ST na Lol ot) 01 o -1 T APPSR UU USSR 443
dihedral_style charmm command..............coouiiiiiiiiiiiie e e 444
dihedral_style charmm/omp COMMANA..........cccuiiiiiiiiiiiie ettt 444
dihedral_style class2 COMMANC.........cocuiiiiiiiiiiiie ettt sttt 446
dihedral_style class2/0mp COMMANG.........couiiiiiiiiiiiie ettt sttt ee st e s e es 446
dihedral COET COMIMANT........cooi e e et e e e e e e e e e e e e e e e e e e aaas 450
dihedral_style cosine/shift/exp COMMANA............coooiiiiiiiiiiiiiiie e e 452
dihedral_style cosine/shift/exp/omp command..............coceeueriiiiiiienienie et 452
dihedral_style fourier COmMmand............cocuiiiiiiiiiiiie et 454
dihedral_style fourier/omp COMMANG.c.ooiiiiiiiiiieiie ettt 454
dihedral_style harmonic COMMANA............couiiiiiiiiiiiie ettt st 456
dihedral_style harmonic/omp COMMAN............cocueiiiiiiiiiiieieeie ettt 456
dihedral_style heliX cOmMMand...........cocooiiiiiiiiii et 458
dihedral_style heliX/Omp COMMANG.......c..oiiiiiiiiiiii ettt 458
dihedral_style hybrid COMMANQ............ccooiiiiiiiiiiii ettt 460
dihedral_style multi/harmonic COMMANA...........ccceiiiiiiiiiiiiiee et 462
dihedral_style multi/harmonic/omp COMMANG..........octiriiriiriinieiie ettt 462
dihedral_style nharmonic COMMANA............cueiiiiiiiiiiiiiie et 464
dihedral_style nharmonic/omp COMMANC.cccuiiiiiiiiiiiieeieeie ettt 464
dihedral_style NONE COMMANG..........eiiiiiiiiiiiiieie ettt sttt sb e st e s e saeesaee e e ais 466
dihedral_style oplS COMMAN.........c.cuiiiiiiiiiie ettt st e st e s e e es 467
dihedral_style opls/omp COMMANA........cccueiiiiiiiiiiiiiie ettt 467
dihedral_style quadratic COMMAN..........c.ccoeeiiriiriiiiiiniit ettt 469
dihedral_style quadratic/omp COMMAN.........cc.coiririiiiinirietintintetete ettt 469
dihedral_style COMMAN............cocuiiiiiiiiie ettt sttt s e bt e it e e as 471
dihedral_style table COMMANA...........ooouiiiiiiiiiee ettt sttt nae e 473
dihedral_style table/omp cOMMANA...........cocuiiiiiiiiiiiie e e 473
diMENSION COMMEAN.eiuiiiiiiiiiiie ettt e st e st et e sb e e satesbtesbeesbeesbeesbeesbeesaeesbeenseenns 476
displace_atoms COMMANA..........couiiiiiiiiie ettt st e sae e bt e sbeesbeesbeesaeesaeenaeees 477
AUMP COMIMEANT. ..ottt sttt ettt ettt ee ettt sbe et e bt sbeesaebe s bt ebeenaenaeeaeeanes 479
dump iIMage COMMEANA......cc.eoutiiiriirieietertereet ettt ettt sttt ettt ebe et e sbesbeeseebesbeebeenaenaeeaeennes 479
dump MOVIE COMMANG......ccuiruieiiiriintieitetertereet ettt ettt ettt ettt et ete st sbe et e bt sbeeseebesbeebeenaenaeeaeennes 479
dump mOlfile COMMANM........coeeiiiriiiiiiiier ettt s sb e sae e eanes 479
dUMP IMAZE COMMANT.eeuiiiiieiiteiie ettt et e bt et esbtesheesbeesbeesbeesbeesbeesbeesaeesbeenseenes 487
dUMP MOVIE COMMEAN........eouiiiiiiiiiieitieite ettt et e st et e st esbtesbeesbeesbeesbeesbeesbeesbeesaeesaeenneenes 487
dump_modify COMMANG......cc.cocuiriiiiiiiiienieeet ettt st eae et eanes 495
dump mMOIfile COMMANG.....cc.eiiiiiiiiii ittt st sb e sbee s esaeesaee e eas 506
€CHO COMIMANA......eiiiiiiii ettt ettt s b e s bt e sbeesbeesbeesbeesbeesbeesheesaeenneenis 508
FE D Q0] 10100 F21 1 Lo RSO TUUTURURR 509
fiX adapt COMMANC.........oiiiiiii ettt st sat e bt e bt e st e bt e sbeesaeesaeenaeeas 514
fiX addfOrce COMMANG.......ooiiiiiiiiiie ettt st e st e bt e bt e sbeesaee bt e naeeas 518
fix addforce/cuda COMMAN...........cocuiiiiiiiiiiie ettt 518

Vii

LAMMPS Users Manual

Table of Contents

fix addtorque COMMEANC.........oiiiiiiiiiiie ettt st be e bt e bt b e saeesaee et eaes 521
fix append/atoms COMMEAN...........ooiiiiiiiiiie ettt ettt e bt e bt e sbeesbeesaeeseeeais 523
FIX ALC COMIMAN.......evvviiiiiiiiiieeecee ettt e e e ettt e e e e e e e e et e e e e e e esaaeeeeeessenaaaeeeeessennsaaeeeeesenans 525
fiX ave/atom COMMEANT.........ccouveiiiiii ittt e e e ettt e e e e e et e e e e e e s seaaaaeeeeesseensaaeeeeesenans 530
fix ave/Correlate COMMAN.............ooiiiiuiiiiiie et e et e e e e e et e e e e e e eataeeeeeseeenaaaereeeseans 532
fiX ave/hiStO COMMIANA.oiiiieiiiie ettt e e ettt e e e e e et e e e e s e eaataeeeeesseensaaeeeeesenns 537
fix ave/spatial COMMANC........cccuiiiiiiiiii ettt b e st esbeesae e bt e e eas 542
fiX aVe/tiMeE COMIMIANA.........ooiuiiiiiiee it ee et e e e ettt e e e e e et e e e e e e e aaaeeeeeessenaaaeeeeessesnnaareeeesenans 547
fiX aVefOrce COMMIANG.........ooiiieiiiii ettt e e e ettt e e e e et e e e e s e eaaaeeeeesseenaaaeeeeeeenns 552
fix aveforce/cuda COMMANG............coooouiiiiiiiiiiee et e e e e e e e e etae e e e e e eeeaaaeeeeeeeens 552
fiX DAlanCe COMIMANG..........oooiuuiiiiiii ittt e ettt e e e e et e e e e e e et eeeeeeseeaaaaeeeeessennaaareeeesenans 554
fiX bond/Dreak COMMANG............vviiiiiiiiiiiiiie ettt e et e e e e e e e e e e s e eataeeeeesseenaaaeeeeeeenns 558
fiX bond/Create COMMAN............ooiiiiiiiiiiiiiie ettt e e e e e e e e e e et e e e e s eeaaaeeeeesseenaaaeeeeesenns 561
fiX bONA/SWaP COMMANG.eiiiiiiiiiiiiiie ettt st e saeesbeesb e e bt e sbeesaeesaeenaeenis 564
fiX DOX/TElaX COMMIANA......oiiiiiiiiiiie ettt e e e e et e e e e e et e e e e e s eenaaaeeeeesseennaareeeesenns 567
fIX COIVATS COMIMANG........ciiiiiiiiiiiie ettt e e e ettt e e e e et et e e e e e eeaaaeeeeeesseaaaaeeeeesseensaaeeeeesenns 572
fiX defOrm COMIMANG..........cooiiiiiiiii et e ettt e e e e e et e e e e e e eaaaeeeeesseensaaeeeeesenns 574
fiX dePOSIE COMIMANA.cuiiiiiiiiiiii ettt st sbt e satesbeesb e e sbeesbeesaeesaeenaeees 582
FIX drag COMMANGottt ettt sb e she e sbee s bt e sbeesb e e sbeesbeesaeesbeenneens 586
FIX dt/TESEt COMMAN.......ciiiiiiiiiiiii ettt e e ettt e e e e et e e e e e e et e e e e e e s eemaaaeeeeessennsaareeeesenns 587
fIX field COMMANG.......cooiiiiiiiiiiii ettt e e ettt e e e e e et e e e e s s eaaaeeeeesseenaaaeeeeesenns 589
fiX enforce2d COMMANG.........c.uvvviiiiiieiieieie et e e e e e e e e et ae e e e e s eeenaaaeeeeesenns 592
fix enforce2d/cuda COMMEANT...........oooiuiiiiiie ettt e e e e e e e et e e e e e s e eeaaaeeeeeeenns 592
fiX eVapOTate COMMEANA.c..eotiietiitieiteterte ettt ettt ettt a ettt sbe e e ebesbeebeenbenaeeaeennen 593
fiX eXternal COMIMANG..........ccoouueiiiiiiieceeeee et e et e e e e e e e e e e e e eaaaeeeeesseenaaaeeeeeseans 595
fIX frE€EZE COMIMAN........ooiiiiiiiiiiiiie et e ettt e e e et e e e e e et eeeeeesseaaaeeeeesseensaaeeeeesenans 598
fix freeze/cuda COMMEANT...........ooiiiiiiiiiiiiee et e et e e e e e e e e e e e atae e e e e s seeaaaeeeeeseens 598
fIX GCMC COMIMANC.....c..iiiiiiiiiie ettt st st e st e bt e sbeesb e e sbeesaeesbeesbeenaeeais 600
FIX gld COMMEAN....ceiiiiiii ettt ettt sb e sbe e bt e et e bt e saeeas 604
fiX Gravity COMMEAN.cocuiiiiiiiiiiiie ettt ettt a e st e s bt e saeesaeesb e e sbeesaeesaeesbeenaeeeis 607
fix gravity/cuda COMMANC.........oouiiiiiiiiie ettt sttt e s e bt e bt e saeeas 607
fiX gravity/Omp COMMANG.ccuiiiiiiiiiiiiie ettt sh e sbeesaeesbeesb e e sbeesbeesbeesaeesaeees 607
FIX NEAt COMIMAN.......uviiiiiiiiiiiieeee ettt e e e et e e e e e e et eeeeeseeataeeeeesseensaaeeeeeeenns 609
§ D 0016 10} 1011 0F2Y 4 ¢ FUU OO PRRRRN 611
§ D 116 [0L aeT0) 1010 0 T2 1 (o KRR RRRRN 614
fiX [angeVIN COMMIANC.iiiiiiiiii ettt st she e e bt e bt e sb e e sbeesbeesaeesaeenaeees 617
fix langevin/eff COMMAN............coiiiiiiii et e 621
S0 (o4 d LUV Ta IeTe) 01 007z 1 Lo KNSR 623
fix Ib/MOmMENTUM COMIMANG.eeiiiiiiiiiiiiieeeeeieiteeeee e e e eeee e e e e e et et e e e e eeaaeeeeeeessesnaaaeeeeesseennaaeeeeesenans 629
FIX ID/PC COMMEANTL.....oiiiiiiiiiie ettt sttt e s bt e bt e b e s bt e sbeesaeesaeenaeeais 631
fix Ib/rigid/pc/sphere COMMANG.........oouiiiiiiiiiiiee ettt st 632
fiX ID/VISCOUS COMMAN........euvuiiiiiiiiiiiiieie e e ettt e e e et e e e e e e e e e e e e et e eeeeeseeaaaaeeeeessennsaaeeeeeeenns 634
fiX lINEfOrCE COMMANG........ooiiieiiiiiiieeiiee ettt e e ettt e e e e e et e e e e s e eaaaeeeeesseensaaeeeeeeenns 636
fIX MESO COMIMANG.vviiiiiiiiiiiieiie et et e e e et e e e e e e eea e et e e e eeeaaaeeeeeessenataeeeeessennnaaeeeeesenans 637
fiX MesO/StatioNary COMMANG.ccuiiiiiiieie ettt ettt st e st e sbtesaeesbeesbeesbeesbeesaeesaeenseenes 638
FIX_MOdify COMMANG.....cueiiiiiiiiii ettt sttt be e bt e bt e bt e et e bt e sbeees 639
fiX MOmMENtUM COMMIANA........uvviiiiiiiiiiiiiie et e e et e e e e e e e e e e e eeaaeeeeeeeseeaaaaeeeeessennsaaereeeeenns 640
fIX MOVE COMIMEANT.....uviiiiiiiiiiiieiee et e et e e e e et e e e e e e et eeeeeesesaataeeeeessennsaaeeeeesenans 642

LAMMPS Users Manual

Table of Contents

FIX TSSE COMMAN. ...ttt sttt sttt a e sb et sa et e et sbeesaebesbeeseenee 646
fIX NED COMMANG.....c.ueiiiiiiiiieiieitcte ettt ettt ettt eb ettt bbbt b esaenae e e ennen 649
FIX IIVE COMMAN.. ettt sttt ettt eb et b e eb et sbesbeesaebe bt ebeenae bt eaeennen 651
fiX nVt/cuda COMMANC.......cc.iiiiiiiiii ettt sttt st be e b nae e eanen 651
fIX NVE/OMP COMMANT.eeiiiiiiii ittt ettt st esbe e s bt e s bt e sb e e sbeesbeesbeesbeeneeenis 651
FIX NP COMMEAN....eiiiiiiiiie ettt st ae e s bt e s bt e bt e sb e e s bt e sbeesaeesaeenaeeeis 651
fiX NPt/cuda COMMEANC........ooiiiiiiii ettt ettt et e b e sbe e b e saeesaee s ees 651
fiX NP/OMP COMMANT.eiiiiieiiieiie ettt sa e s bt e sat e s bt e sb e e sbeesbeesbeesaeenaeeas 651
FIX PN COMIMANG ...ttt b e s a e sbe e s bt e s bt e sb e e bt e sbeesbeesaeenaeees 651
fiX NPh/0OMP COMMEAN ..ottt sttt e bt e saee e e as 651
fiX NVE/ET COMMANG......coiiiiiieiiiii ettt sttt et eanes 660
fiX NP/Eff COMMAN.......cociiiiiiiii ettt sttt e s e e as 660
fiX NPh/ff COMMANC.coeiiiiii ettt ettt st e s e e aes 660
fix nph/asphere COMMAN............c.oiiiiiiiiiii ettt ettt st e st e it e e as 663
fix nph/asphere/omp COMMANC..........oouiiiiiiiiiee ettt sttt e st esae e e e s 663
fiX NPh/SPhEere COMMEAN.c.oiiiiiiiii et ettt e st e st e e as 666
fix nph/sphere/omp COMMANC...........iiiiiiiiii ettt 666
fiX NPRUZ COMMEANC....c..couiiiiiiiiiiiii ettt sttt sttt sae e eanes 669
fiXx NPhug/OmP COMMEANT.....c..eoiiiiiiiiiiieni ettt st sae e eanen 669
fiX NPt/asphere COMMANC.oiiiiiiiie ettt st et e bt sbeesaee bt e e e es 673
fix npt/asphere/omp COMMAN...........cocuiiiiiiiiiiiie ettt sttt e bt e i e e eees 673
fiX NPt/SPhere COMMANA.........cccuiiiiiiiiie ettt st sbe e s e bt e i e e e es 676
fix npt/Sphere/omp COMMAN.........c.cuiiiiiiiiiiiiee ettt sttt sb e bt e st esaeesaeeseeeas 676
fIX NIVE COMIMANG. ...ttt ettt ettt bttt a e bt et sbesbe e nbe s bt ebeesbenaeeaeennen 679
fiX nve/cuda COMMEANA......cc.eoiiiiiiiiiietererc ettt sttt ettt sbe et s b et esae bt eenen 679
fiX NVE/OMP COMMEANT.......eotieiieiiiiiitieiieterte ettt ettt ettt ettt ebe et sbesbeese et s bt eaeenaenbeeaeeanen 679
fix nve/asphere COMMANG..........oouiiiiiiiiie ettt ettt st e s e bt e it e e as 681
fix nve/asphere/noforce ComMmMAnd.............oouiiiiiiiiiiiie et 682
fiX NVE/DOAY COMMEAN..... ..ottt st e st be e b e sbeesbeesaeesaeenaeeeis 683
fiX nve/eff COMMANG......cc.ooiiiiiiiii ettt sttt 684
fiX NVE/IIMIt COMMEANC. ..ottt ettt ettt st be b eaenae e eanen 685
fiX NVE/IINE COMMEANT........iitiriieiiiiiitieit ettt ettt et et sbe ettt bttt be b enaenaeeaeeanen 687
fiX Nve/NOforce COMMAN.......coviiiiiiiiiiieriiicet ettt ettt st ea e b eanen 688
fiX NVE/SPhEre COMMEANG......cc.eiiiriiriiiieiercreet ettt sttt st be et eae bt eanen 689
fix nve/sphere/omp COMMANC.cc.eiiiriiriiriiiiiereetcee ettt ettt st eae e eanes 689
fIX NVE/IT COMIMAN. ..c..couiiiiiiieitiiiteet ettt ettt st ettt sbe et be b esaesbeeaeeanen 691
fiX NVE/aSphere COMMANG........cccueiiiririiiiriireet ettt et st b e e eae bt eanes 692
fix nvt/asphere/omp COMMANC..........cccueriiririiiieneeteee ettt st ae et eenes 692
fiX NVE/SIIOd COMMANA.......oouiiiiiiiiiiitiei ettt sttt st ea bt eanen 695
fix nvt/sllod/Omp COMMEANA........cciriiiiriiriiieteercetcee ettt st eae e eanes 695
fix nvt/sllod/eff COMMANG........ccccoiiiiiiiiiri ettt 698
fiX NVE/SPhere COMMANA.........oocuiiiiiii ettt sttt s e bt e b e e ees 700
fix nvt/Sphere/omp COMMAN.........c.cuiiiiiiiiiieie ettt sttt sbeesaee bt e e e seeeas 700
fiX orient/fec COMMAN........coiiiiiiiiiiieeree ettt sttt st b e b sae e eanes 702
FIX PC COMIMANG......eeiiiiieiie ettt ettt b et e s bt e s bt e sbeesatesbtesb e e sbeesaeesaeesbeenneenns 706
fiX PhoNON COMMEANT.....coiiiiiiiii ettt sttt b e s esae e b e e e as 707
fiXx planeforce COMMAN...........c.iiiiiiiiii ettt sttt sb e bt e saee s e e e as 710
D 107311 KOTSRS 711

LAMMPS Users Manual

Table of Contents

FIX POUT COMMEAN.oiiiiiiieiieee ettt st s at e s bt e sat e s bt e sb e e sbeesbeesaeesbeenaeenis 713
fix press/berendsen COMMEAN............oouiiiiiiiiiiiie ittt ettt e sbeesaee it e saeeas 716
IX PriNt COMMAN......cueiiiiiiiiietiti ettt ettt ettt et ettt sbe et be bt esaenbe e eanen 719
fiX property/atom COMMEAN...........ccuiiiiriiiieeie ettt ettt e st esbtesatesbeesb e e sbeesbeesaeesaeenaeeas 721
fiX eq/COmMb COMMAN..........iiiiiiiiiiiiiie ettt st et sae e be e bt esbeesbeesaeesaeenaeeais 724
fix geq/comb/OmpP COMMEANC.........oiiiiiiiiiiie ettt ettt e s e bt e b e e e as 724
fiX geQ/TEAX COMMIANC. ... ettt ettt b e she e sbeesaeesbeesb e e sbeesbeesbeesbeenaeeeis 726
fiX 1€aX/bONdS COMMANG......coutiiiiiriiiiiience ettt sttt et sttt e eae b eanen 728
fix reax/c/bonds COMIMEANC..........cciriiiiririirietete ettt ettt ettt sttt st be b b nae e eanen 728
fiX reax/c/Species COMMEANd........cc.evirierieririeiente ettt ettt ettt ettt sbe et sbesbeese et sbeebeenaenaeeaeennen 729
fiX TECENLET COMMANT....c..eiitieieeiiitirtieit ettt sttt ettt sttt ettt eb et e bt sbe e e ebe bt ebeenaenaeeaeennen 731
fiX TeStrain COMMANG.....c..iouiiiiiiiitiriet ettt ettt et sttt et sb e sbe et b e bt eaesbeebeennen 733
FIX TIZIA COMMANC. ...ttt st sht e bt e bt e sb e e bt e sbeesaeesaeenaeees 736
fiX T1ZIA/MVE COMMANG.eiiiiiiiiiii ettt st sbt e s bt e bt e sb e e sbeesbeesaeesbeenaeeais 736
FIX TIIA/MVE COMMEANC. ...ttt st e bt e bt e s b e sbeesbeesbeesaeenaeeeis 736
FiX T1IA/MPL COMMEANC. ...ttt st et e st e bt e bt e s bt e sbeesaeesaeenaeeas 736
fixX rigid/MPh COMMAN.......coiiiiiiiiiii ettt sttt s e bt e e e e as 736
fix rigid/small COMMANG.cocuiiiiiiiiii ettt ettt st e st e bt e e as 736
fix rigid_pc_Sphere COMMEAN............ooiiiiiiiiiee ettt sttt e e 746
fiX SEtfOTCe COMIMEANT.iitiiiiiiiiiiiit ettt sttt st sbe s bt e ea bt eanen 748
fix setforce/cuda COMMANG.........cciririiriiriniriicncetcee ettt sttt st b e e e sae e eanen 748
fiX shake COMMANG.......coouiiiiiiiiiiiiet ettt sttt s sb e bt et eae bt eanen 750
fix shake/cuda COMMEANC.........cocuiriiiiiiiier ettt sttt sa e 750
f1X S COMMANA. ...c.eeiiiiiiiieieetc ettt ettt et sttt ettt bbbt b esaenaeeaeeanen 753
FIX SPIING COMMANG.......eiiuiieiiieii ettt et et e s b e shtesheesaeesbeesbeesbeesbeesaeesbeenseenns 756
fiX SPIING/TZ COMMANT. ... ettt ettt s b e sht e sbee s et e sbeesb e e sbeesbeesaeesaeenaeens 758
fixX SPring/self COMMAN.........cocuiiiiiiiiii ettt sttt b et e b e sae e b e e e as 760
IX STA COMIMANC.......ctiiiiiiiiiieieetct ettt ettt et b e sbe bbbt e enaenaeeaeeanen 762
fiX StOre/force COMMEANC......coueiiiiiiiieiieierterce ettt sttt sb et bt e eae b eanes 768
fiX StOre/State COMMEANM.coueetiriiriieiieterte ettt ettt ettt sttt ettt eb et st sbe e e nbe s bt ebeenaenaeeaeeanen 769
fix temp/berendsen COMMANG.uiiiiiiiiiiiie ettt sttt e st sb e bt e bt e saeesaeeseeeais 771
fix temp/berendsen/cuda COMMANG.......cc..iriiiiiiiiiiiiie ettt sttt st e s ee e e i e e s 771
fix temp/rescale COMMANG.........ooouiiiiiiiiie ettt sttt s e et e bt e e as 774
fix temp/rescale/cuda COMMAN...........eiiiiiiiiiiie ettt st 774
fix temp/rescale/limit/cuda COMMAN............cocuiiiiiiiiiiiie e 774
fix temp/rescale/eff COMMAN............cooiiiiiiii e e 7717
fix thermal/conductivity COMMANA..........cocereriiriiririiienieet ettt eanes 779
IX /TS COMMANT.....c.veiieiiiiieieetctete ettt ettt et a e eb et sbe bbbt ebe e b e bt eaeennen 782
FIX tI/SPIING COMMANG. ...ttt ettt sh e sat e sbtesbeesbeesbeesbeesbeesaeesbeenaeenes 785
fIX tMA COMMANT.....c.eeiiiiiiiiiietcte ettt ettt ettt et s a et sbe bbbt e bt et e naeeaeeanen 788
FIX TN COMIMANG.etiiieiiitieieet ettt ettt ettt b et saesbe et e bt sbeesaebe s bt ebeenaenaesaeennen 790
fiX tuNe/KSPACE COMMEANC....c..eevtiiiriiiiieieniercet ettt ettt ettt sbe et be e eae bt eanen 793
fiX VISCOSILY COMIMAN.otiitiiiiitiniieitetenterteet ettt ettt sttt et sa et e et sbe e et bt ebeenaenaeeaeeanen 795
fiX VISCOUS COMMAN....cutitiiieiiitiitieitete ettt ettt et ettt ettt et saeebe ettt she e e ebesbeebeenbenaeeaeennen 798
fix viscous/cuda COMMEANT.......c..couiririirieriirirtee sttt ettt ettt ettt st et beeae e saeeaeeanen 798
fix Wall/IJ93 COMMAN.......ccuiotiiiiiiriiiieeeree ettt sttt st b e e ae bt eenen 800
fiX Wall/[J126 COMMANG......cueiiiiiiiiiiieie ettt st e st e st e bt e b e bt e sbeesaeesaeenaeeas 800
fix Wall/[j1043 COMMAN.......ooiiiiiiiiiie ettt e s esae e b e et e as 800

LAMMPS Users Manual

Table of Contents

fix wall/colloid COMMANG........ccuiriiiiiiiieriiie ettt sttt sae e eenen 800
fix wall/harmonic COMMAN.......c..coeriiriiriiriiiiteneetcec ettt sttt ettt ea et eanen 800
fix wall/gran COMMANG..........oiiiiiiiii ettt ettt e bbb e saeesaeeseeeas 805
fix Wall/piSton COMMANC........cocuiiiiiiiiie ettt b e s bee s esaeesaee b e as 808
fix wall/reflect COMMAN.........ccucoiiiiiiiiriee ettt sttt eanen 810
fix wall/region COMMEAN.........c.oiiiiiiiie ettt ettt s e st e bt e e es 813
fiXx Wall/sTd COMMEANT........oouiriieiiiiiitiei ettt sttt ettt bbbt et ea e bt aeeanen 816
IOUP COMMANT. ...ttt sae e s s e st e aeesaeesaeesaeesaeesaeeae 819
GrOUP2NAX COMIMANT......euiiiieeiie ittt ettt eea e eae e st e bt esb e e sheesheesbeesbeesbeesbeesbeesbeesaeenneenns 822
T COMMANA. ...ttt ettt ettt et ettt bttt b et e st e bt eaeeanen 823
improper_style class2 COmMMAN............cocuiiiiiiiiiiiie et 826
improper_style class2/0mp COMMANC..........cuoiiiiiiiiiiiiie ettt 826
improper_coeff COMMAN........c..cciiiiiiiiniiiiiceteee ettt sttt 829
improper_style COSSQ COMMANA.........oiiiiiiiiiiiieie ettt sttt st sb et esbeesaee e e seeeas 831
improper_style coSSQ/OmMP COMMANG.........couiiiiriiriiiiieiie ettt te st et e seee st e b eesbeesbeesaeesaeeseeenees 831
improper_style cvif COMMAanA...........cociiiiiiiii e e e 833
improper_style cvif/omp COMMANG.......c.c.ooiiiiiiiiiiie et 833
improper_style fourier COMMAN...........cocuoiiiiiiiiiiii ettt 835
improper_style fourier/omp COMMANC...........cocuiiiiiiiiiiiie et 835
improper_style harmonic COMMANC...........cocuiiiiiiiiiiiie et e 837
improper_style harmonic/omp COMMANG..........couiiiiiiiiieiieeieeee ettt 837
improper_style hybrid command.............cocooeeiiiriiiiiiinin e 839
IMpProper_style NONE COMMANT.oiuiiiiiieiiieie ettt sttt et sb e bt e bt e saeesaeeseeeas 840
improper_style ring COMMEAN...........ooiiiiiiiiiieeie ettt sttt e bt e bt e sbee et e saeesaeeas 841
improper_style ring/0omp COMMANG.c..eiiiriiiieiieiie ettt ettt st e st e saee bt e e e seeeas 841
IMProper_Style COMMANT.......ccc.iiiiiiiiii ittt sttt e bt e bt e b e sbeesbeesaeesaeesaeenais 843
improper_style umbrella COMMANd...........coouiiiiiiiiiiii e e 845
improper_style umbrella/omp command.............ccoooiiiiiiiiiiii e 845
INCIUAE COMMEANU....c..eouiiiiiiiiieeicteet ettt ettt ettt bbbt e ea e bt e e eanen 847
JUIMP COMIMANG. ...ttt ittt t e et e et e e sb e e sheeeh e e ehee s bt e eb e e sbeesbeesheesaeesbeeaaeesbeesbeesaeesneenneenns 848
kspace_modify COMMANG.......cccuoiiiiiiiiiie ettt et ettt st s 850
KSpace_Style COMMANG.......cccueiiiiiiiie ettt ettt ettt ettt e et e et e e ateeaeesaneeas 855
Label COMMANG........couiiiiiiiiiieetc ettt ettt ettt ettt sbe et et be b enaenbeeaeeanen 860
1attiCe COMMIANG.coueiuieiiiiitieit ettt sttt et ettt et et sa e ebe et e bt bt eseenbe bt e beenbenbeebeennen 861
LOZ COMIMEANA. ...ttt st e bt e bt e s bt e s bt e sheesbeesbeesbeesbeesbeesaeesaeenneenns 864
INASS COMIMANC. ¢...euveteteeititiete ettt ettt et et sb e bt et e bt sbeeat et e ebe e bt enaesaeebeemte bt sbeeseenbenbeebeenaenseaueennen 865
MIN_MOdify COMMANG.......ccuiiiiiiiiii ittt et e st e bt e b e sbeesbeesaeesaeenaeeais 867
MIN_StY1E COMIMANG.eiiiiiiiiiiiiie ettt e bt e sae e s bt e sb e e s bt e sbeesbeesaeenaeens 869
MINTMIZE COMIMAN. c..c..eeutiiieiieitetirtt ettt ettt ettt ettt ettt eb e et e sbesbeesaenbesbeebeenaenaeeueennen 871
MOIECUIE COMMEAN....c..eiuiiiiitieiietittet ettt ettt ettt ettt sb et bt e e st bt ebeenbenbeeaeennen 875
NED COMIMAN. ...ttt sttt ettt e b sttt eb e e et e st ebe et et sbeesaebesbeebeense bt eaeennen 881
neigh_mMOodify COMMANG........cocuiiiiiiiiii ettt sb e bt sbee bt e bt e saeeas 887
NEIZNDOT COMMANG.....c..eiuiiiiiiieiteiiti ettt ettt ettt st ettt sbe bbbt e enaenbeeaeeanen 890
NEWLON COMIMANG.eiiiiiiiiiiiiieieete ettt ettt st et e st saee s e saeesaeesaeesaeesaeesaeesaeesaeenaeenae 892
NEXE COMIMEANT.....eiiiiiiiiiiiii ettt sttt sae e s e st e st e b e s b e e saeesaeesaeesaeesaeeae 893
PACKAZE COMIMEANT. ..c..itiiiitiiiiiet ettt ettt ettt et b e et sb e sbe et e st bt ebeenenbeeaeenee 896
pair_style adp COMMANG.......cc.cociiriiririiiiieieetet ettt sttt s ae e e ene 900
pair_style adp/omp COMMANG.........coeriiiiiririeietiitet ettt ettt ettt et s ae b e ene 900

Xi

LAMMPS Users Manual

Table of Contents

pair_style airebo COMMANA..........cciririiriiriniietett ettt ettt ettt sae e ae b e ene 903
pair_style airebo/Omp COMMEANC........cc.cecuiririiiiriirtieietere ettt sttt st a e ene 903
pair_style rebo COMMEANA.........cociiviiriiiiiiiereet ettt ettt st sttt sae e b be e ene 903
pair_style rebo/omp COMMANC........c..coeiiiiriirieieiiiieiet ettt sttt s a e ene 903
pair_style awpmd/cut COMMANT........co.eeruiririeieiiriieiet ettt ettt ettt sttt s eeeenesbe e ene 906
pair_style beck COMMANA.........ccccoiiiiiiiiiiiii et 908
pair_style beck/gpu cOmMmAand...........coceecviririeieniiniieee et 908
pair_style beck/omp cOmMmMAand..........c..cecueririiieniiniiiee et 908
pair_style body COMMANd.........ccccciririiiiiriiieic ettt ettt et st 910
pair_style bop COMMEANA........cc.oociiiiiriiiiiiieretc ettt sttt et e 912
pair_style born COMMANG.........coceeviiririiiiininietc ettt ettt st 918
pair_style born/omp COMMANG........c..coeeiiriirieieiitiete ettt ettt sttt st a e s ene 918
pair_style born/gpu COMMAN.........co.coeeiiriirieieiieee ettt ettt st s 918
pair_style born/coul/long COMMAN..........cceoieiiriiririeieniereeee ettt st 918
pair_style born/coul/long/cuda COMMANG........c..coiririeriinirieiieneetctee ettt 918
pair_style born/coul/long/gpu COMMANG........cccuertiriirieriirinieiene ettt ettt ettt 918
pair_style born/coul/long/omp cOMMANd........c..ccuiririeriiririeiireneee ettt 918
pair_style born/coul/msm COMMANC.........cccceieiiriinirieriinirie ettt st 918
pair_style born/coul/msm/omp COMMANG........c..cceririeriiririeieieneetetene ettt 918
pair_style born/coul/wolf cOmMMANA.........cccoeieieriiririiriieee et 918
pair_style born/coul/wolf/gpu command............ccooerieriiniriniinineeece e 918
pair_style born/coul/wolf/omp cOmMMAand...........cccoirieriiririiiinineeeceee et 918
pair_style brownian COMMANd...........coeeruiriirieteniinieieene ettt sttt st 921
pair_style brownian/omp COMMANG..........ccerieieriinirierienirieet ettt sttt et ae e e ene 921
pair_style brownian/poly COMMAN..........ccceeeeieriiniiienieniineetee ettt s 921
pair_style brownian/poly/omp COMMANC.........c..coueririeriiririeiene ettt et 921
pair_style buck COMMANA........cccceiiiririiiiiineeice ettt 923
pair_style buck/cuda COMMANC..........cccceciiriiiiiiriiiiie ettt 923
pair_style buck/gpu cOmMANA........c..coeeiiiiiiiiiiiie ettt 923
pair_style buck/omp cOmMMANA.......c..coeiriiririiiiiiieeree ettt e 923
pair_style buck/coul/cut cOMMANd........cc.coirieiiriiniiieenree ettt 923
pair_style buck/coul/cut/cuda command............coeeirierininieiinineeee e 923
pair_style buck/coul/cut/gpu cOmMmMANd..........cccueruiruirienieninieieeneeteee ettt 923
pair_style buck/coul/cut/omp COMMANG.........cccueruiririeriirinieiene ettt 923
pair_style buck/coul/long COMMANd.........ccceeeeieriiririerieniereeee ettt 923
pair_style buck/coul/long/cuda command...........c..coeeverieniririinineetcee ettt 923
pair_style buck/coul/long/gpu cOMMANd.........c.ccouiririiriiniirieienieneetetene ettt 923
pair_style buck/coul/long/omp COMMANG........c.c.couiririeriiririeienienieetetene ettt et 923
pair_style buck/coul/msm COMMAN........ccceoeeiiriiririeriinireeee ettt st 923
pair_style buck/coul/msm/omp COMMANd..........cceririeriiririeienieneeeetene ettt 923
pair_style buck/long/coul/Iong coOmMmMANd...........cceeirierieririeieneneeieene ettt 927
pair_style buck/long/coul/long/omp coOmmAand.............cceririerienineeieninieeeeneneerene et 927
pair_style lj/charmm/coul/charmm command.............cccccoiririinininiieninieeeneeee e 930
pair_style lj/charmm/coul/charmm/cuda command...............cccevirerrienininieneninieene e 930
pair_style lj/charmm/coul/charmm/omp command...............cccerererierininienenineeene e 930
pair_style lj/charmm/coul/charmm/implicit command............cccocererieniinirrienenenieene e 930
pair_style lj/charmm/coul/charmm/implicit/cuda command...........cccccoererveenininieienienenieneneeeenn 930
pair_style lj/charmm/coul/charmm/implicit/omp command............cccceeererveereneneesenenenieneneeeenn 930

Xii

LAMMPS Users Manual

Table of Contents

pair_style lj/charmm/coul/long command...........c..coeeciereriririinineeteeeeetene et 930
pair_style lj/charmm/coul/long/cuda command............c..coceoeeienininieninieieeneeee e 930
pair_style lj/charmm/coul/long/gpu command.............ccccoereeiinineeieninieieneneneerene et 930
pair_style lj/charmm/coul/long/opt comMmAaNd...........ccceceririeiineneeieniinieeeene et 930
pair_style lj/charmm/coul/long/omp command............ccccoereecienenerieninieeeneneneetene e 930
pair_style lj/charmm/coul/msm coOmmand..........c..coceeceerueririrriineneeieneneee ettt 930
pair_style lj/charmm/coul/msm/omp command............ccccoereeienereeiieninieeeneneneerene et 930
pair_style 1j/class2 COMMANA..........coeriiiiriiiiiciiiet ettt sttt s 934
pair_style lj/class2/cuda coOmMmAand...........coceeeeeeriinirienieninietee ettt st 934
pair_style 1j/class2/gpu COMMAN..........cccoiririiriiniiietenereeee ettt st 934
pair_style 1j/class2/omp COMMAN.........cc.coiririeriinirieieniereet ettt ettt 934
pair_style lj/class2/coul/cut COMMANC.........cceeueriiririiriiniirieee ettt 934
pair_style lj/class2/coul/cut/cuda command..............ccceeeriririiininenienineeeeeneseeee e 934
pair_style lj/class2/coul/cut/omp cOmMMANd...........coceeceerieriririinineeieene ettt 934
pair_style lj/class2/coul/long cOMMANA..........cccueruiririiriirinieiee ettt 934
pair_style lj/class2/coul/long/cuda command.............c.cceriririiinineeieninieeeeneeeee e 934
pair_style lj/class2/coul/long/gpu cOMMAN..........coerieriiriiririiniineetctent ettt 934
pair_style lj/class2/coul/long/omp COMMANC.........cceeceeriiriirieiinineeicene ettt 934
PAIT_COCTE COMIMANG.iiiiiiiii ittt ettt ettt e sttt eateeaeesaneens 937
pair_style colloid COMMANT.........ccoviriiiiiriinieict ettt sttt st 941
pair_style colloid/Zpu COMMANC........co.ceoiiriiiiiiiiiieieeree ettt et 941
pair_style colloid/omp cOMMANC.......c..cocuiriiiiiiriirieieeree ettt 941
pair_style cOmb COMMANT.ccceeriiririiiirieniet ettt ettt ettt et sae sttt b e aesbesaeene 946
pair_style comb/OmpP COMMEANT......c..coeeriiriirieieiitiet ettt ettt ettt et et s eeeeaesbeeaeene 946
pair_style comb3 COMMANA.........cceririiiiiiriiniieietitt ettt ettt ettt sttt st ae b e ene 946
pair_style coul/cut COMMANG........cc.coeriiiiiirinieietie ettt ettt ettt et st a e ene 950
pair_style coul/cut/omp COMMANT........ccceriririiriinieietentereet ettt ettt et st ene 950
pair_style coul/debye COmMMAN.........c..cccuiriiiiiiiiiniieee ettt 950
pair_style coul/debye/omp cOMMAN..........ccccecueriiririiriininieieeneeeeee ettt 950
pair_style coul/dsf cOMMANd..........coceoiiiiiiiniiiiiii ettt 950
pair_style coul/dst/gpu cOMMANA..........cccoiririiriiniiiienre ettt et 950
pair_style coul/dsf/omp COMMANG.........cceoirieiiriiniiiieee ettt st 950
pair_style coul/long COMMANd........c.coeiiiriirieieiiniietet ettt ettt sttt et s besbe e ene 950
pair_style coul/long/omp COMMANG.......c..coeririiriinirietenineetee ettt sttt st ae e e ene 950
pair_style coul/long/gpu COMMANG........cc.coirieieriinieierienieree ettt ettt s a e 950
pair_style coul/msm COMMAN.......c..coeeiiririeieiiiieieterte ettt ettt sttt s eeeeae b s ene 950
pair_style coul/msm/omp COMMANG.........cceririeriiririenieniereetente ettt ettt sttt s eeeeae b eaeene 950
pair_style coul/Wolf COMMANC........c..coeeiiiiiiiiiiiiie ettt 950
pair_style coul/wolf/omp COMMAN..........cccooieiiriiniiiiriiniee ettt 950
pair_style tip4p/cut COMMANC.........coeriiiiirinieietit ettt sttt et s be e 950
pair_style tip4p/long COMMANC.......c..coeioiiririeieiiiieiet ettt ettt s a e be e ene 950
pair_style tip4p/cut/Omp COMMAN........cc.coiririiriiniieietentereet ettt ettt et st ene b e ene 950
pair_style tip4p/long/omp COMMAN........ccceririiriiririerentireetene ettt sttt sae e ae e eaeene 950
pair_style coul/diel COMMANd.........c..coeeiiiriiiiiiiiiete ettt 955
pair_style lj/cut/dipole/cut COMMANC........c..coceeiiriiririiiiniiie ettt 957
pair_style lj/cut/dipole/cut/gpu COMMANG...........cceruiriiriinirieiiieneeeetee ettt 957
pair_style lj/cut/dipole/cut/omp COMMAN..........cceoiriiriiririiiieneetcee ettt 957
pair_style 1j/st/dipole/sf command............c..coeeueriiriiiininiieee e 957

LAMMPS Users Manual

Table of Contents

pair_style 1j/st/dipole/sf/gpu command............cccoeririirininiiiinenetce e 957
pair_style 1j/st/dipole/sf/omp command..........c.coevirierininiriiineneetce et 957
pair_style lj/cut/dipole/long COmMMAN.........c..cecueriiririeriirinieiee ettt 957
pair_style 1j/long/dipole/long command.............cceeirierienirieiinineeeetene ettt 957
pair_style dpd COMMEANA.c..cociiriiririiiiieieetc ettt ettt ae e be e 964
pair_style dpd/omp COMMANC.........cocoeiiiriiieiiiieietertree ettt st a e e 964
pair_style dpd/tstat COMMANC.........coerieriiririeieiieet ettt sttt et s a b e ene 964
pair_style dpd/tstat/omp COMMANC........c..coirieiiriiririeienereetee ettt sttt s 964
pair_style dSmC COMMANG........cocueviiririeiiiiniet ettt sttt et et sa sttt b e ae b e ene 967
pair_style eam COMMANT..........cocuiriiririeiirientet ettt ettt ettt ettt et e sb st e st b eseebenbeeaeenee 969
pair_style eam/cuda COMMANC........c..coeeriiririiiiiiiieieereree ettt sttt b 969
pair_style eam/gpu COMMEANC.........coeriiiiririeieiiit ettt ettt ettt sttt b aesbe e ene 969
pair_style eam/omp COMMANC........coerteiiririeieiitiet ettt ettt et ettt et et b eeeebesbeeaeene 969
pair_style eam/opt COMMANG........cc.coeriiiiririeietittet ettt sttt ettt et ettt et b eeeebesbeeaeene 969
pair_style eam/alloy COMMAN..........coceeoiiriiieiiriiniieietereree ettt st 969
pair_style eam/alloy/cuda COMMANC.........cccereeieriinirieiiniereet ettt sttt 969
pair_style eam/alloy/gpu COMMAN..........coeruiriiriinirieieniereet ettt sttt e 969
pair_style eam/alloy/omp COMMANG.........cccerieiiriiririeieniineetee ettt ettt et 969
pair_style eam/alloy/opt COMMANA.........c..coiririiriiriiieieniree ettt st 969
pair_style eam/cd COMMANC.........ccoririiiiiiinietetet ettt ettt et st 969
pair_style eam/cd/omp COMMANA......c..cccueriririiriiriiiieenereet ettt sttt et st a e e 969
pair_style eam/fs COMMANG..........cceririiiiiriiieteie ettt ettt sttt st be b e ene 969
pair_style eam/fs/cuda cOMMANC..........ccceririiiiriiiiieeee ettt et 969
pair_style eam/fs/gpu COMMANG........cocecuiriirieieniiriieieerereet ettt ettt sae st ene 969
pair_style eam/fS/Omp COMMANG........c..ccouiriririiriintieieene ettt sttt st ae b e ene 969
pair_style eam/fS/Opt COMMAN.........coeeciiriiriiiiriiiieieerree ettt s ene 969
pair_style edip COMMAN.........cccoeiiriiiiiiiirietc ettt ettt et 976
pair_style eff/cut COMMANC..........ccoviiiiiiiiiitc ettt st 979
pair_style eim COMMEANC.......c.eociiriiriiieiiientet ettt ettt ettt ettt et et sa st b et bt eeeenesbesaeenee 984
pair_style eim/omp COMMANC.........cocreiriiririeieiittet ettt ettt sttt ae b e ene 984
pair_style auss COMMANM.........ceevueririeriininiietetite et ettt ettt ettt et et sbesbe et esaesaeeaeenenbeeaeenee 988
pair_style gauss/ZPu COMMEANA.c..coeetiririeieiintietet ettt ettt ettt et et ste st et e e e eeeeaenbesaeene 988
pair_style gauss/OmpP COMMEANT......c..coeeruiririeieriintieteterte ettt ettt et ettt st et et b eeeebenbeeaeene 988
pair_style gauss/Cut COMMEANA........coereeiiririeietinttet ettt ettt ettt et et sae st e st e eeeeaesbesaeene 988
pair_style gauss/cut/omp COMMANC..........cccerieiiriiririetenieneeiee ettt sttt s ae e e ene 988
pair_style gayberne COMMAN........c.coeeueriirieieriiniieierente ettt ettt ettt sttt aesbeeaeene 991
pair_style gayberne/gpu COMMANd........cc.eoueruieteriiniirientenienieetenie sttt sttt see sttt seeeeeene b e ene 991
pair_style gayberne/omp COMMAN..........coerieeeriiriirienieniireetente ettt ettt et et s ne b e ene 991
pair_style gran/hooke COMMAN........c..cccueriiriieiiriiniiieenree ettt sttt 995
pair_style gran/cuda COMMAN..........coeeoiiriirieieriirtieiet ettt ettt et s ene 995
pair_style gran/omp COMMANC........c..coeeriiriirieteiiiteiet ettt ettt ettt sttt s ae b e ene 995
pair_style gran/hooke/history COMMAN..........ccucouiririeriiririeieneneeeeteste ettt 995
pair_style gran/hooke/history/omp COMMANd...........cecververiirerienineeienieniteeetente sttt eaeene 995
pair_style gran/hertz/history COmMmMANd...........cecueruiruirierierireeiene ettt st 995
pair_style gran/hertz/history/omp COMMANG......c..coeeierieririrrienieneetentene ettt 995
pair_style 1j/Zromacs COMMAN.........c..cccueririeieriiniiieerree ettt sttt 999
pair_style lj/gromacs/cuda COMMANG........c..coeeteriiririenienineeiee ettt st 999
pair_style 1j/gromacs/gpu COMMANd.........cceririeriinirierientireetene sttt ettt st 999

Xiv

LAMMPS Users Manual

Table of Contents

pair_style 1j/gromacs/omp COMMANd........ccceeeeieriinirieniiniiriietene ettt ettt st ene 999
pair_style lj/gromacs/coul/gromacs command.............cccevereeriereneeieninieeeneneneeene et 999
pair_style lj/gromacs/coul/gromacs/cuda command...........c..cecevereeienininienenenieene e 999
pair_style lj/gromacs/coul/gromacs/omp command...........coceeeverererueninieeenieneneerene e eaeenne 999
pair_style hbond/dreiding/lj COMMANA...........cceeiiiiiiiiiiieee ettt 1002
pair_style hbond/dreiding/lj/omp commMand.............cccouerierienienienienieieeeseese et 1002
pair_style hbond/dreiding/morse COMMAN...........cecierieiierierienie ettt seee e 1002
pair_style hbond/dreiding/morse/omp cOMMANA............cceeiierienienienienieeeeese e 1002
pair_style hybrid COmMMand.............oouiiiiiiii ettt 1007
pair_style hybrid/omp COMMANA...........coooiiiiiiiiiie et 1007
pair_style hybrid/overlay command............cccooiiiiiiiiiiiiiee s 1007
pair_style hybrid/overlay/omp cOmMmMAand...........ccceerieiiiiiinianieieee et 1007
pair_style Kim COMMANd.........cocooiiiiiiiiiiee ettt ettt ettt et be e b ebeebeeneean 1012
pair_style 1cbop COMMANA.........cooiiiiiiiiiee ettt 1017
pair_style line/lj COMMANC........c.cocviriiriiiiiiiiee ettt st 1019
pair_style line/lj/omp COMMANC.........ccooiioiiriiiirieinreeeeeeecee ettt 1019
pair_style Jist COMMANA.cooiiiiiiiiie ettt ettt et e sbe e b e b e beeneeas 1021
pair_style 1j/cut COMMEANC..........coiiiiiiiiiee ettt ettt et e b e bbb eneeas 1024
pair_style lj/cut/cuda cOmMmAnd............coooiiiiiiiiiie et 1024
pair_style lj/cut/experimental/cuda command............c..ccouiiiiiiiniinienieeeee e 1024
pair_style 1j/cut/gpu COMMAN........ccooiiiiiiiiiiie ettt ettt b bbb neean 1024
pair_style 1j/cut/opt COMMANA.........cccuiiiiiiiiiiiie ettt sttt et sb b e b eneean 1024
pair_style 1j/cut/omp COMMANG..........coiiiiiiiiiiie ettt ettt e sb e sb e b e nbeeneean 1024
pair_style lj/cut/coul/cut COMMAN.........ccuiiiiiiiiieiieiee ettt ettt sbe s 1024
pair_style lj/cut/coul/cut/cuda command...............cocueriiiiiniinieniee s 1024
pair_style lj/cut/coul/cut/gpu cOMMANA..........cciiiiiiiiiiiiee et 1024
pair_style lj/cut/coul/cut/omp cOMMANA.........cccoeiiriiiiiiiiiieere et 1024
pair_style lj/cut/coul/debye command...............ccocieiiiiiiiiiiiiiee e 1024
pair_style lj/cut/coul/debye/cuda command..............cooiiiiiiiiiiiniiiieeeee e 1024
pair_style lj/cut/coul/debye/gpu command............ccccueriiiiiniinienieieee e 1024
pair_style lj/cut/coul/debye/omp command...........cc.coeeieiiiiiiiienienieee e 1024
pair_style lj/cut/coul/dst cOmMMANd............coiiiiiiiieiiiieee et 1024
pair_style lj/cut/coul/dst/gpu command.............cooiiiiiiiiiiiiieee e 1024
pair_style lj/cut/coul/dst/omp command............ccoceeiiiiiiiiiiiiiereee e 1024
pair_style lj/cut/coul/long COMMANG...........ooiiiiiiiiiieieie ettt et e b eeas 1024
pair_style lj/cut/coul/long/cuda command.............ccccuerieiienienienienieseee et 1024
pair_style lj/cut/coul/long/gpu COMMEANA...........coriiiiiriiiiiiieri ettt 1024
pair_style lj/cut/coul/long/opt COMMANC.........cc.eiiiiiiiiiiiieiiert ettt 1024
pair_style lj/cut/coul/long/omp COMMAN..........cccieriiriiiiiniieitienie ettt ettt nee e 1025
pair_style lj/cut/coul/msm cOMMANd..........c.ccoiieririiinieiieiei ettt 1025
pair_style lj/cut/coul/msm/gpu COMMANC..........coiiiiiiiiiiiiiieiierie ettt 1025
pair_style lj/cut/coul/msm/omp COMMANC.........ccociiiiiriiiiiiieienie et 1025
pair_style lj/cut/tip4p/cut COMMEANA...........coiiiiiiiiiiieieee ettt be e eeas 1025
pair_style lj/cut/tip4p/cut/omp COMMANA........c.eeriiiiiniieiieiiert ettt e e eeeas 1025
pair_style lj/cut/tip4p/long cOMMAN.........cceeriiriiiiiiieiieiet ettt et 1025
pair_style lj/cut/tip4p/long/omp COMMANA........ccciiiiiriiiiiiieriienie ettt ettt e e nee e 1025
pair_style lj/cut/tip4p/long/opt COMMAN..........ceriiiiiriiiiiiiertiente sttt ettt nee e eeas 1025
pair_style j96/cut COMMANG........ccceoviriiriiiiiiriietere ettt ettt ettt sae s eaeens 1030

XV

LAMMPS Users Manual

Table of Contents

pair_style 1j96/cut/cuda cOmMMANA.........c.cocveriiririiiinirerteeneeeetete ettt st s 1030
pair_style 1j96/cut/gpu COMMAN..........coviiiriiriiieiercreeeeee ettt st 1030
pair_style 1j96/cut/omp COMMANC.........cceeciiriiririeiencreeeeee ettt st eaeens 1030
pair_style 1j/cubic cOmMMANd...........cocueiiiiiiiiiieiie ettt 1032
pair_style 1j/cubic/omp COMMANC..........coiiiiiiiiiiie ettt 1032
pair_style Ij/cut/sSmooth COMMANd..........cccueiiiiiiiiiiieiee ettt 1034
pair_style lj/cut/smooth/cuda command.............c.ccerieriiiiiiiiiiereeee e 1034
pair_style lj/cut/smooth/omp COMMANA..........ccceiiiiiiiiiiiiiete et 1034
pair_style lj/expand commMand............cccooiiriiiiiiieiieee et 1035
pair_style lj/expand/cuda cOmMmancccoeiiiiieiiiniiiie e 1035
pair_style lj/expand/gpu COMMEANA.........ccooiiiiiiiieiieieie ettt be e 1035
pair_style lj/expand/omp COMMANC............ooiiiiiiiiiieieee ettt 1035
pair_style lj/long/coul/Iong COMMANA........cceiiiiiieiieieiiei ettt ettt e e 1038
pair_style lj/long/coul/long/omp commMand............c.cceeueriirienienienienienieneeee et 1038
pair_style lj/long/coul/long/opt COMMANA.........ccoiiiiiriiiiiiieierie ettt 1038
pair_style 1j/long/tip4p/long COMMAN...........ccceeriiiiiniiiieieriesee ettt e s 1038
pair_style 1j/sf COMMANd.........ccciiiiiiiiiie ettt 1042
pair_style 1j/sf/omp COMMANA.........cccooiiiiiiiiiiee et 1042
pair_style 1j/smooth COMMANA............cooiiiiiiiie ettt 1044
pair_style lj/smooth/cuda cOMMANA...........cccoiiiiiiiiiiiiie et 1044
pair_style 1j/smooth/omp COMMAN.........c.coiiiiiiiieiieiee ettt e e 1044
pair_style lj/smooth/linear COMMANA..........ccceiiiiiiiiiiiieiee ettt 1046
pair_style lj/smooth/linear/omp COMMANC..........cccueriiriiiiiiieiierie ettt 1046
pair_style lubricate COMMANA..........ccooiiiiiiiiiie ettt be e eneeas 1048
pair_style lubricate/omp COMMAN.........ccueiiiiiiiieiieiei ettt sttt e b e b eneean 1048
pair_style lubricate/poly COMMAN.........cccueiiiiiiiieiieieie ettt ettt sbe e eneean 1048
pair_style lubricate/poly/omp COMMANA.........ccceiiiiiiiiiiiiieiere et 1048
pair_style lubricatelU cOmMMANA..........cccoiiiiiiiiiiie ettt 1052
pair_style lubricateU/poly cOmMMAand............ccooiiiieiieniiiieiieiee sttt ettt 1052
pair_style meam COMMAN.........ccuoiiiiiiiiiiieie ettt ettt et e bt e bt e b e bt enbeenbeeneean 1056
PAIT_Style MEAM/SPIINE.......eiiiiiiiiiitieiie ettt et e bt e b et e bt e bt e sbe e bt ebeebeeneean 1062
pair_style meam/splNe/OM......cooiiiiiiiiiiete ettt ettt ettt ettt b e b e b e b neean 1062
PAIr_Style MEAM/SW/SPIINE.co.iiiiiiiieiieiie ettt ettt ettt e sb e bt e b e b eneean 1065
pair_style meam/sw/SPINE/OMIP..........ooiiiiiiiiiieiie ettt ettt ettt e sb e bt e nbeenbeeneean 1065
pair_style mie/Cut COMMANG...........couiiiiiiiiiiiie ettt ettt e bt e bt sb et e bt e bt e sbeesbeebeenbeeneean 1068
pair_style mie/cut/gpu COMMANC........cccuiiiiiiiiieiie ettt ettt et e b e sb e b e b eneean 1068
PaIr_MOdify COMMANG.eiiiiiiiiiiiie ettt e bt b e b et e bt e bt e sbe e bt ebeebeeneean 1070
pair_style Morse COMMAN.........c..ueiiiiiiiiiiieie ettt ettt et e bttt e b et e bt e bt e sbeesbeenbeenbeeneean 1073
pair_style morse/cuda COMMEANA.........ccuiiiiiiiiiiiie ettt ettt beeneeas 1073
pair_style morse/gpu COMMANA..........ooiiiiiiiiiieiie ettt ettt sb et e bt e bt e sbeesbeenbeenbeeneean 1073
pair_style morse/0mp COMMEANA.........ccuiiiiiiiiieiie ettt ettt sb ettt e bt e sbee bt enbeenbeeneeas 1073
pair_style morse/Opt COMMAN...........ooiiiuiiiiiiieitie ettt et et et et e bt esbeesbeesbeesbeenbeenbeeneeas 1073
pair_style nb3b/harmonic COMMANA...........cciiiiiiiiiieieie ettt 1075
pair_style nb3b/harmonic/omp COMMANC..........coiieriiriiiiiiiertieree ettt 1075
pair_style nm/cut COMMANC..........uiiiiiiiiieie ettt ettt b et et e st e sbe e beenbeenbeeneean 1077
pair_style nm/cut/coul/cut COMMANd..........cccuiiiiiieiiiiieiieier ettt be e eeean 1077
pair_style nm/cut/coul/long COMMAN...........coviiiieiienieieiiert ettt et et e e nbeeeeas 1077
pair_style nm/cut/omp COMMANG........ccuiiuiiiiiiieiie ettt ettt ettt e bt e bt e bt e sbe e bt enbeebeeneeas 1077

XVi

LAMMPS Users Manual

Table of Contents

pair_style nm/cut/coul/cut/omp COMMANC.........ccoiiiiiiiiiiiiieiee et 1077
pair_style nm/cut/coul/long/omp COMMANA...........cccieriiiiiiieiieiie ettt 1077
PAIr_Style NONE COMMANA.......oiuiiiiiiiiiiieiie ettt ettt et e bt b e b et e bt e bt e sbe e bt ebeebeeneean 1080
pair_style peri/pmb COMMANA.........cccuiiiiiiiiiiie ettt ettt sb e sb e b e b eeas 1081
pair_style peri/pmb/omp COMMANC........ccuiiiiiiiiieiieiiei ettt sttt sb e sb e b e e eneeas 1081
pair_style peri/Ips COMMAN...........couiiiiiiiiieiie ettt ettt b et et e bt esbe e bt ebeenbeeneeas 1081
pair_style peri/Ips/omp COMMANC..........oiiiiiiiiiiie ettt et sbe e e b e b eneean 1081
pair_style peri/ves COMMEAN..........couiiiiiiiiieiie ettt ettt e sttt et et e bt e bt e sbee bt ebeebeeneean 1081
Pair_style reax COMMAN........c..ceiiiiiiiiiiieiee ettt ettt et et e b e bt et e bt e bt e sbeesbeebeebeeneeas 1084
pair_style reax/c COMMAN.........cc.uiiiiiiiiieiie ettt ettt ettt b et e bt e bt e sbe e bt et e ebeeneeas 1087
pair_style resquared COMMANG........c..couiriereriiririetene ettt ettt saesbeeeeeeesresaeeneens 1092
pair_style resquared/gpu COMMANA...........ccueriiririerienenerieene ettt ettt et be st saeennens 1092
pair_style resquared/Omp COMMANT.........ccueruiririerienirenierteneetetente ettt ettt ettt see e resaesaeeneens 1092
pair_style 1j/sdk COmMMANA.cocveriiriiiiiiiriire ettt st 1096
pair_style 1j/sdk/Zpu cOmMMANA..........cceririiriirinieiene ettt st 1096
pair_style 1j/sdk/omp COMMANA.........ccoriiiiriiririeiencreeeese ettt st 1096
pair_style lj/sdk/coul/long command...........c..coceeeevierirerieninineeeese ettt 1096
pair_style lj/sdk/coul/long/gpu cOMMAN..........coceevueriririeniininieienenie ettt 1096
pair_style lj/sdk/coul/long/omp COMMAN.........coceevveriririeniininietentene ettt sttt saeeaeens 1096
pair_style SOft COMMEANA.cceoiiiiiiiiieieteret ettt ettt et st aesae s eneens 1099
pair_style soft/gpu COMMEANC.........cccuiririiiiriiriietere ettt st eaeens 1099
pair_style soft/omp COMMANC.........ccooiriiiiriiririeerreeee ettt s eaeens 1099
pair_style sph/heatconduction COMMANA...........cciieiiiriiiieiieieree et 1101
pair_style sph/idealgas COMMANA...........ccuiiiiiiiiiiiieiee ettt neeeneean 1102
pair_style sph/lj COMMANA.........coiiiiiiiiiii ettt ettt et e sbe bt e b e beeneean 1104
pair_style sph/rhosum COMMANA.............ooiiiiiiiiiii et 1106
pair_style sph/taitwater COMMAN..........cceeiiiiiiiieiieie ettt ettt sbe b ebeenbeeneeas 1107
pair_style sph/taitwater/morris COMMANG..........cocverterirerierieneneetentene ettt ettt ere e sieeneens 1109
PAIT_StYIE COMMANG. ...ttt ettt ettt et e bt e b e b et e bt e bt e sbe e bt ebeebeennean 1111
PAIT_StYIE SW COMMANG......eiitiiiiiiitieiie ettt ettt et e bt e b e b et e bt e bt e sbee bt ebeebeensean 1115
pair_style sw/cuda COMMANG..........couiiiiiiiiiiiie ettt ettt ettt ettt e et e bt enbeenbeeneean 1115
PaIr_style SW/ZPU COMMEANA........coiiiiiiiiiieiieee ettt ettt sb et e bt e bt e bt e b ebeenbeeneeas 1115
pair_style SW/omp COMMANG......c...ooiiiiiiiiiiiiie ettt ettt ettt et e bt e bt e bt e sbeesbeenbeenbeeneean 1115
pair_style table COMMANG........cceeiiriiriiiieietereeee ettt ettt st sae s eaeens 1119
pair_style table/Zpu COMMANA........ccovuiririiriiriirietere ettt ettt st 1119
pair_style table/omp COMMANA.......c..coiriiriiriiririeiene ettt ettt st ennens 1119
pair_style tersoff COMMANA.........c.oiiiiiiiiiie ettt 1123
pair_style tersoff/table COMMAN............ooiiiiiiiiiie ettt 1123
PAIT_StYLE terSOTT/CUAA.ceiiiiiiii ettt ettt e b bt et e b eneean 1123
ORI (S 1S 0018 740310 o PO PSSO 1123
pair_style tersoff/table/omp COMMANA...........ccoiiiieiiiiiiiiieee et 1123
pair_style tersoff/mod COMMANA...........c.ooiiiiiiiiiie ettt 1128
pair_style tersoff/mod/omp commMand............c..coiieriiriiiiiiieee e 1128
pair_style tersoff/zbl COMMAN...........ooiiiiiiiiieiie ettt 1132
pair_style tersoff/zbl/omp command..............ccoieiiiiiiiiiiiee e 1132
pair_style tri/lj COMMAN...........cooiiiiiiiiiee ettt ettt ettt et e be e bt e b e b eeean 1138
pair_style tri/Ij/omp COMMANC........cccooiiiiiiiiiie ettt ettt ettt sb e b e b e nbeeneean 1138
PAIT_WIILE COMIMANGeiiiiitiiitie ettt et e bt e bt e bt e sb e e sbeesbeesbe e bt e bt e bt e bt enbeenbeebeenbeebeensean 1140

LAMMPS Users Manual

Table of Contents

pair_style yukawa COMMANG...........ooiiiiiiiiiiie ettt ettt et e beesbe e b e nbeeneean 1142
pair_style yukawa/gpu COMMEANA........c..coiiiiiiiiiiie ettt ettt sbe b beeeeas 1142
pair_style yukawa/omp COMMAN..........ccuiiiiiiiiiiiieieie ettt 1142
pair_style yukawa/colloid cOmmand.............coiiiiiiiiiniiiieecereee ettt 1144
pair_style yukawa/colloid/gpu COMMANA..........coiiiiiiiiiiieiieiiese et 1144
pair_style yukawa/colloid/omp cOMMANA.........ccocieiiiiiiiiiiieienieee ettt 1144
pair_style Zbl COMMANA..........ooiiiiiiiiie ettt ettt et e be e b e b e b eneean 1147
pair_style zbl/omp COMMAN..........cocuiiiiiiiiiiiie ettt ettt e sb e sb e nbeeeean 1147
PArtition COMIMANC......couiriiiiiitirtietetettett ettt sttt ettt eb et et sb e ettt e st bt e e saesbeeaeenesaesbeeneens 1149
PIA COMMEAN.......eeiiiii ettt ettt et e b e bt e s bt e s bt e sb e e bt e bt e bt e bt e bt enbee bt enbeenbeennean 1151
PIINE COMMEAN. ...ttt ettt et e st e b e b e b e e sb e e sbeesbe e bt e bt e bt e bt e bt eabeebeenbeenseensean 1155
PTOCESSOIS COMIMANT.eettitteitieitieetieette et et et e st e stteshee bt e bt e st eesbeesbeesbe e bt e bt e bee bt enbeenbeebeenbeenbeensean 1157
QUIE COTMIMANA. ¢+ttt ettt et ettt et et e bt e bt et e eabeenteenbeenbeenbeembeenbeenbeenbeenbeenbeenseansean 1162
TEAA_dAtA COMMUANG ... et e e e et eaaaaaaeaees 1163
read_dUmp COMMANG.coiiiiiiiiee ettt e bt b e b et e bt e bt e sbe e bt ebeebeeneean 1177
TEAA_TESTATT COMIMANT. eeeeeeeeeeee e e e e e e et eeeeareaaaaaaaaes 1182
TEZION COMIMANG. ...ttt ettt ettt ettt e bt e st e e shte e bt e st e e bt e sbeesbeesbeenbe e bt e bt enbee bt enbeenbeenbeenbeanseensean 1185
TEPLICALE COMMANG.euiriieiiitiitieitetettett ettt sttt et et e b et et sbeebe et e nbe e bt esnentesbeeaeennenaesueennens 1190
TETUN COMIMAN ¢ .etieiiitiitie ettt ettt ettt ettt ettt et e satee st e e bt e ettt eabteenbbeesabeesabeesabeeeabaeenbbeesabeesaneens 1192
reset_tiMEeSteP COMIMANA.eiiuiiiiiiiiiiie ettt ettt ettt et e st e e st e e bt e bt e bt e bt e bt e bt e nbeenbeebeebeensean 1195
TESEATT COMIMANA. ...ttt ettt st e st e e bt e b e b e e bt e sb e e s bt e sbe e bt e bt e bt e bt enbeenbeebeenbeanbeensean 1196
TUN COMIMANLttt sh e s bt e b e h e e bt e bt e s bt e sbeesbe e bt e bt e bt e bt e bt enbeenbeenbeenbeennean 1199
TUN_SEYI& COMMEAN.....c.iiiiiiiiiiiie ettt b et e bt e bt e b e sbeebeebeeneean 1202
SEE COMMEAN ...ttt ettt ettt et e a e et e e et e eate et e eabeeabeeateeatesabeeabeembeenteeneeeaneenteeas 1206
SHETl COMMANG ...ttt ettt ettt et e et e et et e eateeateeatesateeas 1211
special_bonds COMMEAN...........ooiiiiiiiiii ettt et ettt ettt eaneea 1213
SUFTIX COMIMANG.....cuiiiiieiie ettt ettt ettt ettt et e et e eabeeateeateeaeeeaneeateeas 1216
£ COMIMANG.c.eiiiiiiiiiie ettt e sat e st e st e et e e bt e e sbbeesbbeesabeesabeesabeeanne 1218
EEIMPET COMIMANT. ...ttt ettt ettt et et et e et e e s bt e bt enbe e bt enbeenbeenbeebeenbeenbeenbeensean 1223
thEeTMO COMMEAN.eiuiiiiiieii ettt ettt ettt et e bt e bt e bt e bt enbeebeebeenbeenbeensean 1225
thermo_modify COMMANG.coiuiiiiiiieit ettt ettt et e be e bt e b e beeneeas 1226
thermo_Style COMMANG.c.eiiuiiiiiie ettt ettt ettt et et e bt et e e bt e beebeebeennean 1229
tIMESLEP COMIMANG.....eueeiutieiiiiieeit ettt et ettt ettt et et e et et e et e este e bt enbeenbeenbeenbeenbeebeenbeenbeenseensean 1234
UNCOMPULE COMIMATIA. c...eiiitiiiiiieeitie ettt ettt sttt ettt e ettt esbb e sbbeesateeeabeeeabeeebeeesbbeesbbeessbeesabeesbeeanne 1235
UNAUMP COMIMAN. ...ttt ettt et ettt et et et e et e esteeabeenbeenbeenbeenbeenbeebeenbeenbeenseensean 1236
UNTIX COMIMANG.......eeiteiiie ettt ettt ettt et e bt et e bt e bt e bt e bt enbeenbeebeenbeenbeenbeennean 1237
UNIES COMIMANG. ...ttt ettt ettt ettt et et e et e et e ea bt eabeeabeenteenbeenbeenseenbeenbeenbeenbeenbeenseenseansean 1238
Variable COMIMANG.couiiiiiiiiie ettt ettt ettt e bt e bt et e b e e bt enbe e bt ebeenbeenbeennean 1242

IMAALh OPETALOTS. ...ttt ettt et ettt et ettt et e bt et e eabe et e eabe et e enbeenbeenteebeenbeenbeenbeansean 1247

IMAth FUNCHIONS. ...ttt ettt ettt ettt e bt et et e e bt e e ebeebeebeenbeansean 1248

Group and Region FUNCHONS.cccoiiiiiiiiiiiicieeetecee et 1249

SPECIAL FUNCLIONS. ...ttt ettt ettt ettt ettt e et et e e e eaneeaneeas 1250

AtOm Values and VECIOTS.......eoruiiiiiiiiiiiiiieeite ettt ettt et ettt e st eebeeenbaee e 1251

COMPULE RETEIENCES. ...ttt ettt ettt e b e b b eneeas 1251

FIX RETEIEICES. ...ttt ettt ettt ettt ettt et e bt e bt ebeenbeeneean 1251

Variable RETEIEICES......c..iiuiiiiiiiieie ettt ettt ettt ettt e bt e b ebeeneeas 1252
VEIOCILY COMIMANG.eeiuiiiiiieiii ettt ettt ettt ettt e bt e bt e bt et e enbe e beebeebeenbeenbeensean 1256
WIItE_dAtA COMIMANG.ttt e e e et eeeeeeeeeeeeeeeeeeeeeeaeeeeeeeeeeeeeesesesesesesssesaesennsnnnnes 1259

LAMMPS Users Manual

Table of Contents

WIILE_dUMP COMMEAN.....utiiuiieiiieiiieie ettt ettt ettt ettt et et e bt e bt e bt e beenbeenbeebeebeenbeenbeensean 1261
WIILE_ TESTATT COMMUANG. ...t ee et et e aaeeeeeeeeeaaeaas 1263

XiX

LAMMPS Documentation
1 Feb 2014 version
Version info:

The LAMMPS "version" is the date when it was released, such as 1 May 2010. LAMMPS is updated
continuously. Whenever we fix a bug or add a feature, we release it immediately, and post a notice on this page of
the WWW site. Each dated copy of LAMMPS contains all the features and bug-fixes up to and including that
version date. The version date is printed to the screen and logfile every time you run LAMMPS. It is also in the
file src/version.h and in the LAMMPS directory name created when you unpack a tarball, and at the top of the
first page of the manual (this page).

¢ If you browse the HTML doc pages on the LAMMPS WWW site, they always describe the most current
version of LAMMPS.

¢ If you browse the HTML doc pages included in your tarball, they describe the version you have.

¢ The PDF file on the WWW site or in the tarball is updated about once per month. This is because it is
large, and we don't want it to be part of every patch.

¢ There is also a Developer.pdf file in the doc directory, which describes the internal structure and
algorithms of LAMMPS.

LAMMPS stands for Large-scale Atomic/Molecular Massively Parallel Simulator.

LAMMPS is a classical molecular dynamics simulation code designed to run efficiently on parallel computers. It
was developed at Sandia National Laboratories, a US Department of Energy facility, with funding from the DOE.
It is an open-source code, distributed freely under the terms of the GNU Public License (GPL).

The primary developers of LAMMPS are Steve Plimpton, Aidan Thompson, and Paul Crozier who can be
contacted at sjplimp,athomps,pscrozi at sandia.gov. The LAMMPS WWW Site at http://lammps.sandia.gov has
more information about the code and its uses.

The LAMMPS documentation is organized into the following sections. If you find errors or omissions in this
manual or have suggestions for useful information to add, please send an email to the developers so we can
improve the LAMMPS documentation.

Once you are familiar with LAMMPS, you may want to bookmark this page at Section_commands.html#comm
since it gives quick access to documentation for all LAMMPS commands.

PDF file of the entire manual, generated by htmldoc

1. Introduction
1.1 What is LAMMPS
1.2 LAMMPS features
1.3 LAMMPS non-features
1.4 Open source distribution
1.5 Acknowledgments and citations
2. Getting started
2.1 What's in the LAMMPS distribution
2.2 Making LAMMPS
2.3 Making LAMMPS with optional packages
2.4 Building LAMMPS via the Make.py script
2.5 Building LAMMPS as a library

http://lammps.sandia.gov/bug.html
http://lammps.sandia.gov/bug.html
http://www.sandia.gov/~sjplimp
http://lammps.sandia.gov
http://www.easysw.com/htmldoc

S O 00

2.6 Running LAMMPS

2.7 Command-line options

2.8 Screen output

2.9 Tips for users of previous versions

. Commands

3.1 LAMMPS input script

3.2 Parsing rules

3.3 Input script structure

3.4 Commands listed by category
3.5 Commands listed alphabetically

. Packages

4.1 Standard packages
4.2 User packages

. Accelerating LAMMPS performance

5.1 Measuring performance

5.2 General strategies

5.3 Packages with optimized styles

5.4 OPT package

5.5 USER-OMP package

5.6 GPU package

5.7 USER-CUDA package

5.8 Comparison of GPU and USER-CUDA packages

. How-to discussions

6.1 Restarting a simulation

6.2 2d simulations

6.3 CHARMM and AMBER force fields

6.4 Running multiple simulations from one input script
6.5 Multi-replica simulations

6.6 Granular models

6.7 TIP3P water model

6.8 TIP4P water model

6.9 SPC water model

6.10 Coupling LAMMPS to other codes

6.11 Visualizing LAMMPS snapshots

6.12 Triclinic (non-orthogonal) simulation boxes

6.13 NEMD simulations

6.14 Finite-size spherical and aspherical particles

6.15 Output from LAMMPS (thermo, dumps, computes, fixes, variables)
6.16 Thermostatting, barostatting, and compute temperature
6.17 Walls

6.18 Elastic constants

6.19 Library interface to LAMMPS

6.20 Calculating thermal conductivity

6.21 Calculating viscosity

. Example problems

. Performance & scalability

. Additional tools

. Modifying & extending LAMMPS

10.1 Atom styles

10.2 Bond, angle, dihedral, improper potentials
10.3 Compute styles

10.4 Dump styles

10.5 Dump custom output options

10.6 Fix styles

10.7 Input script commands

10.8 Kspace computations

10.9 Minimization styles

10.10 Pairwise potentials

10.11 Region styles

10.12 Body styles

10.13 Thermodynamic output options

10.14 Variable options

10.15 Submitting new features for inclusion in LAMMPS
11. Python interface

11.1 Building LAMMPS as a shared library

11.2 Installing the Python wrapper into Python

11.3 Extending Python with MPI to run in parallel

11.4 Testing the Python-LAMMPS interface

11.5 Using LAMMPS from Python

11.6 Example Python scripts that use LAMMPS
12. Errors

12.1 Common problems

12.2 Reporting bugs

12.3 Error & warning messages
13. Future and history

13.1 Coming attractions

13.2 Past versions

Previous Section - LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands - Next Section

1. Introduction

This section provides an overview of what LAMMPS can and can't do, describes what it means for LAMMPS to
be an open-source code, and acknowledges the funding and people who have contributed to LAMMPS over the
years.

1.1 What is LAMMPS

1.2 LAMMPS features

1.3 LAMMPS non-features

1.4 Open source distribution

1.5 Acknowledgments and citations

1.1 What is LAMMPS

LAMMPS is a classical molecular dynamics code that models an ensemble of particles in a liquid, solid, or
gaseous state. It can model atomic, polymeric, biological, metallic, granular, and coarse-grained systems using a
variety of force fields and boundary conditions.

For examples of LAMMPS simulations, see the Publications page of the LAMMPS WWW Site.

LAMMPS runs efficiently on single-processor desktop or laptop machines, but is designed for parallel computers.
It will run on any parallel machine that compiles C++ and supports the MPI message-passing library. This
includes distributed- or shared-memory parallel machines and Beowulf-style clusters.

LAMMPS can model systems with only a few particles up to millions or billions. See Section_perf for
information on LAMMPS performance and scalability, or the Benchmarks section of the LAMMPS WWW Site.

LAMMPS is a freely-available open-source code, distributed under the terms of the GNU Public License, which
means you can use or modify the code however you wish. See this section for a brief discussion of the
open-source philosophy.

LAMMPS is designed to be easy to modify or extend with new capabilities, such as new force fields, atom types,
boundary conditions, or diagnostics. See Section_modify for more details.

The current version of LAMMPS is written in C++. Earlier versions were written in F77 and F90. See
Section_history for more information on different versions. All versions can be downloaded from the LAMMPS
WWW Site.

LAMMPS was originally developed under a US Department of Energy CRADA (Cooperative Research and
Development Agreement) between two DOE labs and 3 companies. It is distributed by Sandia National Labs. See
this section for more information on LAMMPS funding and individuals who have contributed to LAMMPS.

In the most general sense, LAMMPS integrates Newton's equations of motion for collections of atoms, molecules,
or macroscopic particles that interact via short- or long-range forces with a variety of initial and/or boundary
conditions. For computational efficiency LAMMPS uses neighbor lists to keep track of nearby particles. The lists
are optimized for systems with particles that are repulsive at short distances, so that the local density of particles
never becomes too large. On parallel machines, LAMMPS uses spatial-decomposition techniques to partition the
simulation domain into small 3d sub-domains, one of which is assigned to each processor. Processors

http://lammps.sandia.gov
http://lammps.sandia.gov
http://www-unix.mcs.anl.gov/mpi
http://lammps.sandia.gov
http://www.gnu.org/copyleft/gpl.html
http://lammps.sandia.gov
http://lammps.sandia.gov
http://www.sandia.gov

communicate and store "ghost" atom information for atoms that border their sub-domain. LAMMPS is most
efficient (in a parallel sense) for systems whose particles fill a 3d rectangular box with roughly uniform density.
Papers with technical details of the algorithms used in LAMMPS are listed in this section.

1.2 LAMMPS features

This section highlights LAMMPS features, with pointers to specific commands which give more details. If
LAMMPS doesn't have your favorite interatomic potential, boundary condition, or atom type, see
Section_modify, which describes how you can add it to LAMMPS.

General features

® runs on a single processor or in parallel

e distributed-memory message-passing parallelism (MPI)

e spatial-decomposition of simulation domain for parallelism

¢ open-source distribution

¢ highly portable C++

e optional libraries used: MPI and single-processor FFT

¢ GPU (CUDA and OpenCL) and OpenMP support for many code features

¢ cagsy to extend with new features and functionality

¢ runs from an input script

¢ syntax for defining and using variables and formulas

¢ syntax for looping over runs and breaking out of loops

¢ run one or multiple simulations simultaneously (in parallel) from one script

¢ build as library, invoke LAMMPS thru library interface or provided Python wrapper
e couple with other codes: LAMMPS calls other code, other code calls LAMMPS, umbrella code calls both

Particle and model types
(atom style command)

® atoms

e coarse-grained particles (e.g. bead-spring polymers)

¢ united-atom polymers or organic molecules

¢ all-atom polymers, organic molecules, proteins, DNA
® metals

¢ granular materials

e coarse-grained mesoscale models

¢ finite-size spherical and ellipsoidal particles

¢ finite-size line segment (2d) and triangle (3d) particles
¢ point dipole particles

¢ rigid collections of particles

¢ hybrid combinations of these

Force fields
(pair style, bond style, angle style, dihedral style, improper style, kspace style commands)
® pairwise potentials: Lennard-Jones, Buckingham, Morse, Born-Mayer-Huggins, Yukawa, soft, class 2

(COMPASS), hydrogen bond, tabulated
¢ charged pairwise potentials: Coulombic, point-dipole

¢ manybody potentials: EAM, Finnis/Sinclair EAM, modified EAM (MEAM), embedded ion method
(EIM), EDIP, ADP, Stillinger-Weber, Tersoff, REBO, AIREBO, ReaxFF, COMB

¢ electron force field (eFF, AWPMD)

¢ coarse-grained potentials: DPD, GayBerne, REsquared, colloidal, DLVO

® mesoscopic potentials: granular, Peridynamics, SPH

¢ bond potentials: harmonic, FENE, Morse, nonlinear, class 2, quartic (breakable)

¢ angle potentials: harmonic, CHARMM, cosine, cosine/squared, cosine/periodic, class 2 (COMPASS)

¢ dihedral potentials: harmonic, CHARMM, multi-harmonic, helix, class 2 (COMPASS), OPLS

¢ improper potentials: harmonic, cvff, umbrella, class 2 (COMPASS)

¢ polymer potentials: all-atom, united-atom, bead-spring, breakable

¢ water potentials: TIP3P, TIP4P, SPC

¢ implicit solvent potentials: hydrodynamic lubrication, Debye

¢ KIM archive of potentials

¢ long-range interactions for charge, point-dipoles, and LJ dispersion: Ewald, Wolf, PPPM (similar to
particle-mesh Ewald)

¢ force-field compatibility with common CHARMM, AMBER, DREIDING, OPLS, GROMACS,
COMPASS options

¢ handful of GPU-enabled pair styles

¢ hybrid potentials: multiple pair, bond, angle, dihedral, improper potentials can be used in one simulation

¢ overlaid potentials: superposition of multiple pair potentials

Atom creation
(read_data, lattice, create_atoms, delete_atoms, displace_atoms, replicate commands)

¢ read in atom coords from files

e create atoms on one or more lattices (e.g. grain boundaries)
¢ delete geometric or logical groups of atoms (e.g. voids)

¢ replicate existing atoms multiple times

¢ displace atoms

Ensembles, constraints, and boundary conditions
(fix command)

¢ 2d or 3d systems

¢ orthogonal or non-orthogonal (triclinic symmetry) simulation domains
¢ constant NVE, NVT, NPT, NPH, Parinello/Rahman integrators

¢ thermostatting options for groups and geometric regions of atoms

¢ pressure control via Nose/Hoover or Berendsen barostatting in 1 to 3 dimensions
¢ simulation box deformation (tensile and shear)

¢ harmonic (umbrella) constraint forces

¢ rigid body constraints

¢ SHAKE bond and angle constraints

¢ bond breaking, formation, swapping

¢ walls of various kinds

¢ non-equilibrium molecular dynamics (NEMD)

¢ variety of additional boundary conditions and constraints

http://openkim.org

Integrators
(run, run_style, minimize commands)

¢ velocity-Verlet integrator

¢ Brownian dynamics

¢ rigid body integration

® energy minimization via conjugate gradient or steepest descent relaxation
¢ rRESPA hierarchical timestepping

¢ rerun command for post-processing of dump files

Diagnostics

e see the various flavors of the fix and compute commands
Output
(dump, restart commands)

¢]og file of thermodynamic info

¢ text dump files of atom coords, velocities, other per-atom quantities

® binary restart files

e parallel I/O of dump and restart files

® per-atom quantities (energy, stress, centro-symmetry parameter, CNA, etc)
¢ user-defined system-wide (log file) or per-atom (dump file) calculations

e spatial and time averaging of per-atom quantities

¢ time averaging of system-wide quantities

¢ atom snapshots in native, XYZ, XTC, DCD, CFG formats

Multi-replica models
nudged elastic band parallel replica dynamics temperature accelerated dynamics parallel tempering
Pre- and post-processing

¢ Various pre- and post-processing serial tools are packaged with LAMMPS; see these doc pages.

¢ Our group has also written and released a separate toolkit called Pizza.py which provides tools for doing
setup, analysis, plotting, and visualization for LAMMPS simulations. Pizza.py is written in Python and is
available for download from the Pizza.py WWW site.

Specialized features
These are LAMMPS capabilities which you may not think of as typical molecular dynamics options:

¢ generalized aspherical particles

¢ stochastic rotation dynamics (SRD)

¢ real-time visualization and interactive MD

¢ atom-to-continuum coupling with finite elements

¢ coupled rigid body integration via the POEMS library
¢ grand canonical Monte Carlo insertions/deletions

e Direct Simulation Monte Carlo for low-density fluids
¢ Peridynamics mesoscale modeling

http://www.sandia.gov/~sjplimp/pizza.html
http://www.python.org
http://www.sandia.gov/~sjplimp/pizza.html

¢ targeted and steered molecular dynamics
¢ two-temperature electron model

1.3 LAMMPS non-features

LAMMPS is designed to efficiently compute Newton's equations of motion for a system of interacting particles.
Many of the tools needed to pre- and post-process the data for such simulations are not included in the LAMMPS
kernel for several reasons:

¢ the desire to keep LAMMPS simple
¢ they are not parallel operations

¢ other codes already do them

¢ limited development resources

Specifically, LAMMPS itself does not:

¢ run thru a GUI

¢ build molecular systems

¢ assign force-field coefficients automagically

¢ perform sophisticated analyses of your MD simulation
¢ visualize your MD simulation

¢ plot your output data

A few tools for pre- and post-processing tasks are provided as part of the LAMMPS package; they are described
in this section. However, many people use other codes or write their own tools for these tasks.

As noted above, our group has also written and released a separate toolkit called Pizza.py which addresses some
of the listed bullets. It provides tools for doing setup, analysis, plotting, and visualization for LAMMPS
simulations. Pizza.py is written in Python and is available for download from the Pizza.py WWW site.

LAMMPS requires as input a list of initial atom coordinates and types, molecular topology information, and
force-field coefficients assigned to all atoms and bonds. LAMMPS will not build molecular systems and assign
force-field parameters for you.

For atomic systems LAMMPS provides a create_atoms command which places atoms on solid-state lattices (fcc,
bec, user-defined, etc). Assigning small numbers of force field coefficients can be done via the pair coeff, bond
coeff, angle coeff, etc commands. For molecular systems or more complicated simulation geometries, users
typically use another code as a builder and convert its output to LAMMPS input format, or write their own code
to generate atom coordinate and molecular topology for LAMMPS to read in.

For complicated molecular systems (e.g. a protein), a multitude of topology information and hundreds of
force-field coefficients must typically be specified. We suggest you use a program like CHARMM or AMBER or
other molecular builders to setup such problems and dump its information to a file. You can then reformat the file
as LAMMPS input. Some of the tools in this section can assist in this process.

Similarly, LAMMPS creates output files in a simple format. Most users post-process these files with their own
analysis tools or re-format them for input into other programs, including visualization packages. If you are
convinced you need to compute something on-the-fly as LAMMPS runs, see Section_modify for a discussion of
how you can use the dump and compute and fix commands to print out data of your choosing. Keep in mind that
complicated computations can slow down the molecular dynamics timestepping, particularly if the computations
are not parallel, so it is often better to leave such analysis to post-processing codes.

http://www.sandia.gov/~sjplimp/pizza.html
http://www.python.org
http://www.sandia.gov/~sjplimp/pizza.html
http://www.scripps.edu/brooks
http://amber.scripps.edu

A very simple (yet fast) visualizer is provided with the LAMMPS package - see the xmovie tool in this section. It
creates xyz projection views of atomic coordinates and animates them. We find it very useful for debugging
purposes. For high-quality visualization we recommend the following packages:

e VMD

¢ AtomEye
¢ PyMol

® Raster3d
® RasMol

Other features that LAMMPS does not yet (and may never) support are discussed in Section_history.

Finally, these are freely-available molecular dynamics codes, most of them parallel, which may be well-suited to
the problems you want to model. They can also be used in conjunction with LAMMPS to perform complementary
modeling tasks.

e CHARMM
e AMBER

e NAMD

e NWCHEM
e DL_POLY
¢ Tinker

CHARMM, AMBER, NAMD, NWCHEM, and Tinker are designed primarily for modeling biological molecules.
CHARMM and AMBER use atom-decomposition (replicated-data) strategies for parallelism; NAMD and
NWCHEM use spatial-decomposition approaches, similar to LAMMPS. Tinker is a serial code. DL_POLY
includes potentials for a variety of biological and non-biological materials; both a replicated-data and
spatial-decomposition version exist.

1.4 Open source distribution

LAMMPS comes with no warranty of any kind. As each source file states in its header, it is a copyrighted code
that is distributed free-of- charge, under the terms of the GNU Public License (GPL). This is often referred to as
open-source distribution - see www.gnu.org or www.opensource.org for more details. The legal text of the GPL is
in the LICENSE file that is included in the LAMMPS distribution.

Here is a summary of what the GPL means for LAMMPS users:

(1) Anyone is free to use, modify, or extend LAMMPS in any way they choose, including for commercial
purposes.

(2) If you distribute a modified version of LAMMPS, it must remain open-source, meaning you distribute it under
the terms of the GPL. You should clearly annotate such a code as a derivative version of LAMMPS.

(3) If you release any code that includes LAMMPS source code, then it must also be open-sourced, meaning you
distribute it under the terms of the GPL.

(4) If you give LAMMPS files to someone else, the GPL LICENSE file and source file headers (including the
copyright and GPL notices) should remain part of the code.

http://www.ks.uiuc.edu/Research/vmd
http://mt.seas.upenn.edu/Archive/Graphics/A
http://pymol.sourceforge.net
http://www.bmsc.washington.edu/raster3d/raster3d.html
http://www.openrasmol.org
http://www.scripps.edu/brooks
http://amber.scripps.edu
http://www.ks.uiuc.edu/Research/namd/
http://www.emsl.pnl.gov/docs/nwchem/nwchem.html
http://www.cse.clrc.ac.uk/msi/software/DL_POLY
http://dasher.wustl.edu/tinker
http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org
http://www.opensource.org

In the spirit of an open-source code, these are various ways you can contribute to making LAMMPS better. You
can send email to the developers on any of these items.

¢ Point prospective users to the LAMMPS WWW Site. Mention it in talks or link to it from your WWW
site.

¢ [f you find an error or omission in this manual or on the LAMMPS WWW Site, or have a suggestion for
something to clarify or include, send an email to the developers.

¢ If you find a bug, Section_errors 2 describes how to report it.

¢ If you publish a paper using LAMMPS results, send the citation (and any cool pictures or movies if you
like) to add to the Publications, Pictures, and Movies pages of the LAMMPS WWW Site, with links and
attributions back to you.

¢ Create a new Makefile.machine that can be added to the src/MAKE directory.

® The tools sub-directory of the LAMMPS distribution has various stand-alone codes for pre- and
post-processing of LAMMPS data. More details are given in Section_tools. If you write a new tool that
users will find useful, it can be added to the LAMMPS distribution.

e LAMMPS is designed to be easy to extend with new code for features like potentials, boundary
conditions, diagnostic computations, etc. This section gives details. If you add a feature of general
interest, it can be added to the LAMMPS distribution.

¢ The Benchmark page of the LAMMPS WWW Site lists LAMMPS performance on various platforms.
The files needed to run the benchmarks are part of the LAMMPS distribution. If your machine is
sufficiently different from those listed, your timing data can be added to the page.

® You can send feedback for the User Comments page of the LAMMPS WWW Site. It might be added to
the page. No promises.

¢ Cash. Small denominations, unmarked bills preferred. Paper sack OK. Leave on desk. VISA also
accepted. Chocolate chip cookies encouraged.

1.5 Acknowledgments and citations

LAMMPS development has been funded by the US Department of Energy (DOE), through its CRADA, LDRD,
ASCI, and Genomes-to-Life programs and its OASCR and OBER offices.

Specifically, work on the latest version was funded in part by the US Department of Energy's Genomics:GTL
program (www.doegenomestolife.org) under the project, "Carbon Sequestration in Synechococcus Sp.: From
Molecular Machines to Hierarchical Modeling".

The following paper describe the basic parallel algorithms used in LAMMPS. If you use LAMMPS results in
your published work, please cite this paper and include a pointer to the LAMMPS WWW Site
(http://lammps.sandia.gov):

S. J. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, J Comp Phys, 117, 1-19
(1995).

Other papers describing specific algorithms used in LAMMPS are listed under the Citing LAMMPS link of the
LAMMPS WWW page.

The Publications link on the LAMMPS WWW page lists papers that have cited LAMMPS. If your paper is not
listed there for some reason, feel free to send us the info. If the simulations in your paper produced cool pictures
or animations, we'll be pleased to add them to the Pictures or Movies pages of the LAMMPS WWW site.

The core group of LAMMPS developers is at Sandia National Labs:

¢ Steve Plimpton, sjplimp at sandia.gov

10

http://lammps.sandia.gov/authors.html
http://lammps.sandia.gov
http://lammps.sandia.gov
http://lammps.sandia.gov/authors.html
http://lammps.sandia.gov
http://lammps.sandia.gov
http://lammps.sandia.gov
http://www.doe.gov
http://www.sc.doe.gov/ascr/home.html
http://www.er.doe.gov/production/ober/ober_top.html
http://www.doegenomestolife.org
http://www.genomes2life.org
http://lammps.sandia.gov
http://lammps.sandia.gov/cite.html
http://lammps.sandia.gov/papers.html
http://lammps.sandia.gov/pictures.html
http://lammps.sandia.gov/movies.html

¢ Aidan Thompson, athomps at sandia.gov
¢ Paul Crozier, pscrozi at sandia.gov

The following folks are responsible for significant contributions to the code, or other aspects of the LAMMPS
development effort. Many of the packages they have written are somewhat unique to LAMMPS and the code
would not be as general-purpose as it is without their expertise and efforts.

¢ Axel Kohlmeyer (Temple U), akohlmey at gmail.com, SVN and Git repositories, indefatigable mail list
responder, USER-CG-CMM and USER-OMP packages

¢ Roy Pollock (LLNL), Ewald and PPPM solvers

¢ Mike Brown (ORNL), brownw at ornl.gov, GPU package

¢ Greg Wagner (Sandia), gjwagne at sandia.gov, MEAM package for MEAM potential

¢ Mike Parks (Sandia), mlparks at sandia.gov, PERI package for Peridynamics

¢ Rudra Mukherjee (JPL), Rudranarayan.M.Mukherjee at jpl.nasa.gov, POEMS package for articulated
rigid body motion

® Reese Jones (Sandia) and collaborators, rjones at sandia.gov, USER-ATC package for atom/continuum
coupling

¢ Jlya Valuev (JIHT), valuev at physik.hu-berlin.de, USER-AWPMD package for wave-packet MD

¢ Christian Trott (U Tech Ilmenau), christian.trott at tu-ilmenau.de, USER-CUDA package

¢ Andres Jaramillo-Botero (Caltech), ajaramil at wag.caltech.edu, USER-EFF package for electron force
field

¢ Christoph Kloss (JKU), Christoph.Kloss at jku.at, USER-LIGGGHTS package for granular models and
granular/fluid coupling

¢ Metin Aktulga (LBL), hmaktulga at Ibl.gov, USER-REAXC package for C version of ReaxFF

¢ Georg Gunzenmuller (EMI), georg.ganzenmueller at emi.thg.de, USER-SPH package

As discussed in Section_history, LAMMPS originated as a cooperative project between DOE labs and industrial
partners. Folks involved in the design and testing of the original version of LAMMPS were the following:

¢ John Carpenter (Mayo Clinic, formerly at Cray Research)

¢ Terry Stouch (Lexicon Pharmaceuticals, formerly at Bristol Myers Squibb)
¢ Steve Lustig (Dupont)

¢ Jim Belak (LLNL)

11

Previous Section - LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands - Next Section

2. Getting Started

This section describes how to build and run LAMMPS, for both new and experienced users.

2.1 What's in the LAMMPS distribution

2.2 Making LAMMPS

2.3 Making LAMMPS with optional packages
2.4 Building LAMMPS via the Make.py script
2.5 Building LAMMPS as a library

2.6 Running LAMMPS

2.7 Command-line options

2.8 Screen output

2.9 Tips for users of previous versions

2.1 What's in the LAMMPS distribution

When you download LAMMPS you will need to unzip and untar the downloaded file with the following
commands, after placing the file in an appropriate directory.

gunzip lammps*.tar.gz
tar xvf lammps*.tar

This will create a LAMMPS directory containing two files and several sub-directories:

README [text file
LICENSE [the GNU General Public License (GPL)

bench benchmark problems

doc documentation

examples [simple test problems
potentials [embedded atom method (EAM) potential files

src source files

tools pre- and post-processing tools

If you download one of the Windows executables from the download page, then you just get a single file:

Imp_windows.exe
Skip to the Running LAMMPS sections for info on how to launch these executables on a Windows box.

The Windows executables for serial or parallel only include certain packages and bug-fixes/upgrades listed on this
page up to a certain date, as stated on the download page. If you want something with more packages or that is
more current, you'll have to download the source tarball and build it yourself from source code using Microsoft
Visual Studio, as described in the next section.

12

http://lammps.sandia.gov
http://lammps.sandia.gov/bug.html
http://lammps.sandia.gov/bug.html

2.2 Making LAMMPS

This section has the following sub-sections:

® Read this first

¢ Steps to build a LAMMPS executable

¢ Common errors that can occur when making LAMMPS
¢ Additional build tips

¢ Building for a Mac

¢ Building for Windows

Read this first:

Building LAMMPS can be non-trivial. You may need to edit a makefile, there are compiler options to consider,
additional libraries can be used (MPI, FFT, JPEG, PNG), LAMMPS packages may be included or excluded, some
of these packages use auxiliary libraries which need to be pre-built, etc.

Please read this section carefully. If you are not comfortable with makefiles, or building codes on a Unix
platform, or running an MPI job on your machine, please find a local expert to help you. Many compiling,
linking, and run problems that users have are often not LAMMPS issues - they are peculiar to the user's system,
compilers, libraries, etc. Such questions are better answered by a local expert.

If you have a build problem that you are convinced is a LAMMPS issue (e.g. the compiler complains about a line
of LAMMPS source code), then please post a question to the LAMMPS mail list.

If you succeed in building LAMMPS on a new kind of machine, for which there isn't a similar Makefile for in the
src/MAKE directory, send it to the developers and we can include it in the LAMMPS distribution.

Steps to build a LAMMPS executable:
Step 0

The src directory contains the C++ source and header files for LAMMPS. It also contains a top-level Makefile
and a MAKE sub-directory with low-level Makefile.* files for many machines. From within the src directory,
type "make" or "gmake". You should see a list of available choices. If one of those is the machine and options you
want, you can type a command like:

make linux
or
gmake mac

Note that on a multi-processor or multi-core platform you can launch a parallel make, by using the "-j" switch
with the make command, which will build LAMMPS more quickly.

If you get no errors and an executable like Imp_linux or Imp_mac is produced, you're done; it's your lucky day.

Note that by default only a few of LAMMPS optional packages are installed. To build LAMMPS with optional
packages, see this section below.

Step 1

If Step 0 did not work, you will need to create a low-level Makefile for your machine, like Makefile.foo. You
should make a copy of an existing src/MAKE/Makefile.* as a starting point. The only portions of the file you

13

http://lammps.sandia.gov/mail.html

need to edit are the first line, the "compiler/linker settings" section, and the "LAMMPS-specific settings" section.
Step 2

Change the first line of scc/MAKE/Makefile.foo to list the word "foo" after the "#", and whatever other options it
will set. This is the line you will see if you just type "make".

Step 3

The "compiler/linker settings" section lists compiler and linker settings for your C++ compiler, including
optimization flags. You can use g++, the open-source GNU compiler, which is available on all Unix systems. You
can also use mpicc which will typically be available if MPI is installed on your system, though you should check
which actual compiler it wraps. Vendor compilers often produce faster code. On boxes with Intel CPUs, we
suggest using the commercial Intel icc compiler, which can be downloaded from Intel's compiler site.

If building a C++ code on your machine requires additional libraries, then you should list them as part of the LIB
variable.

The DEPFLAGS setting is what triggers the C++ compiler to create a dependency list for a source file. This
speeds re-compilation when source (*.cpp) or header (*.h) files are edited. Some compilers do not support
dependency file creation, or may use a different switch than -D. GNU g++ works with -D. If your compiler can't
create dependency files, then you'll need to create a Makefile.foo patterned after Makefile.storm, which uses
different rules that do not involve dependency files. Note that when you build LAMMPS for the first time on a
new platform, a long list of *.d files will be printed out rapidly. This is not an error; it is the Makefile doing its
normal creation of dependencies.

Step 4

The "system-specific settings" section has several parts. Note that if you change any -D setting in this section, you
should do a full re-compile, after typing "make clean" (which will describe different clean options).

The LMP_INC variable is used to include options that turn on ifdefs within the LAMMPS code. The options that
are currently recogized are:

¢ -DLAMMPS_GZIP

¢ -DLAMMPS_JPEG

e -DLAMMPS_PNG

¢ -DLAMMPS_FFMPEG

¢ -DLAMMPS_MEMALIGN

¢ -DLAMMPS_XDR

¢ -DLAMMPS_SMALLBIG

s -DLAMMPS_BIGBIG

e -DLAMMPS_SMALLSMALL
¢ -DLAMMPS_LONGLONG_TO_LONG
e -DPACK_ARRAY

¢ -DPACK_POINTER

¢ -DPACK_MEMCPY

The read_data and dump commands will read/write gzipped files if you compile with -DLAMMPS_GZIP. It

requires that your machine supports the "popen" function in the standard runtime library and that a gzip
executable can be found by LAMMPS during a run.

14

http://www.intel.com/software/products/noncom

If you use -DLAMMPS_JPEG, the dump image command will be able to write out JPEG image files. For JPEG
files, you must also link LAMMPS with a JPEG library, as described below. If you use -DLAMMPS_PNG, the
dump image command will be able to write out PNG image files. For PNG files, you must also link LAMMPS
with a PNG library, as described below. If neither of those two defines are used, LAMMPS will only be able to
write out uncompressed PPM image files.

If you use -DLAMMPS_FFMPEG, the dump movie command will be available to support on-the-fly generation
of rendered movies the need to store intermediate image files. It requires that your machines supports the "popen"
function in the standard runtime library and that an FFmpeg executable can be found by LAMMPS during the run.

Using -DLAMMPS_MEMALIGN= enables the use of the posix_memalign() call instead of malloc() when large

chunks or memory are allocated by LAMMPS. This can help to make more efficient use of vector instructions of
modern CPUS, since dynamically allocated memory has to be aligned on larger than default byte boundaries (e.g.
16 bytes instead of 8 bytes on x86 type platforms) for optimal performance.

If you use -DLAMMPS_XDR, the build will include XDR compatibility files for doing particle dumps in XTC
format. This is only necessary if your platform does have its own XDR files available. See the Restrictions section
of the dump command for details.

Use at most one of the -DLAMMPS_SMALLBIG, -DLAMMPS_BIGBIG, -D- DLAMMPS_SMALLSMALL
settings. The default is -DLAMMPS_SMALLBIG. These settings refer to use of 4-byte (small) vs 8-byte (big)
integers within LAMMPS, as specified in src/lmptype.h. The only reason to use the BIGBIG setting is to enable
simulation of huge molecular systems (which store bond topology info) with more than 2 billion atoms, or to track
the image flags of moving atoms that wrap around a periodic box more than 512 times. The only reason to use the
SMALLSMALL setting is if your machine does not support 64-bit integers. See the Additional build tips section
below for more details.

The -DLAMMPS_LONGLONG_TO_LONG setting may be needed if your system or MPI version does not
recognize "long long" data types. In this case a "long" data type is likely already 64-bits, in which case this setting
will convert to that data type.

Using one of the -DPACK_ARRAY, -DPACK_POINTER, and -DPACK_MEMCPY options can make for faster
parallel FFTs (in the PPPM solver) on some platforms. The -DPACK_ARRAY setting is the default. See the
kspace_style command for info about PPPM. See Step 6 below for info about building LAMMPS with an FFT
library.

Step 5
The 3 MPI variables are used to specify an MPI library to build LAMMPS with.

If you want LAMMPS to run in parallel, you must have an MPI library installed on your platform. If you use an
MPI-wrapped compiler, such as "mpicc” to build LAMMPS, you should be able to leave these 3 variables blank;
the MPI wrapper knows where to find the needed files. If not, and MPI is installed on your system in the usual
place (under /usr/local), you also may not need to specify these 3 variables. On some large parallel machines
which use "modules" for their compile/link environements, you may simply need to include the correct module in
your build environment. Or the parallel machine may have a vendor-provided MPI which the compiler has no
trouble finding.

Failing this, with these 3 variables you can specify where the mpi.h file (MPI_INC) and the MPI library file
(MPI_PATH) are found and the name of the library file (MPI_LIB).

If you are installing MPI yourself, we recommend Argonne's MPICH2 or OpenMPI. MPICH can be downloaded

15

from the Argonne MPI site. OpenMPI can be downloaded from the OpenMPI site. Other MPI packages should
also work. If you are running on a big parallel platform, your system people or the vendor should have already
installed a version of MPI, which is likely to be faster than a self-installed MPICH or OpenMPI, so find out how
to build and link with it. If you use MPICH or OpenMPI, you will have to configure and build it for your
platform. The MPI configure script should have compiler options to enable you to use the same compiler you are
using for the LAMMPS build, which can avoid problems that can arise when linking LAMMPS to the MPI
library.

If you just want to run LAMMPS on a single processor, you can use the dummy MPI library provided in
src/STUBS, since you don't need a true MPI library installed on your system. See the scc/MAKE/Makefile.serial
file for how to specify the 3 MPI variables in this case. You will also need to build the STUBS library for your
platform before making LAMMPS itself. To build from the src directory, type "make stubs"”, or from the STUBS
dir, type "make". This should create a libmpi_stubs.a file suitable for linking to LAMMPS. If the build fails, you
will need to edit the STUBS/Makefile for your platform.

The file STUBS/mpi.c provides a CPU timer function called MPI_Wtime() that calls gettimeofday() . If your
system doesn't support gettimeofday() , you'll need to insert code to call another timer. Note that the

ANSI-standard function clock() rolls over after an hour or so, and is therefore insufficient for timing long
LAMMPS simulations.

Step 6

The 3 FFT variables allow you to specify an FFT library which LAMMPS uses (for performing 1d FFTs) when
running the particle-particle particle-mesh (PPPM) option for long-range Coulombics via the kspace_style
command.

LAMMPS supports various open-source or vendor-supplied FFT libraries for this purpose. If you leave these 3
variables blank, LAMMPS will use the open-source KISS FFT library, which is included in the LAMMPS
distribution. This library is portable to all platforms and for typical LAMMPS simulations is almost as fast as
FFTW or vendor optimized libraries. If you are not including the KSPACE package in your build, you can also
leave the 3 variables blank.

Otherwise, select which kinds of FFTs to use as part of the FFT_INC setting by a switch of the form
-DFFT_XXX. Recommended values for XXX are: MKL, SCSL, FFTW2, and FFTW3. Legacy options are:
INTEL, SGI, ACML, and T3E. For backward compatability, using -DFFT_FFTW will use the FFTW?2 library.
Using -DFFT_NONE will use the KISS library described above.

You may also need to set the FFT_INC, FFT_PATH, and FFT_LIB variables, so the compiler and linker can find
the needed FFT header and library files. Note that on some large parallel machines which use "modules" for their
compile/link environements, you may simply need to include the correct module in your build environment. Or
the parallel machine may have a vendor-provided FFT library which the compiler has no trouble finding.

FFTW is a fast, portable library that should also work on any platform. You can download it from www.fftw.org.
Both the legacy version 2.1.X and the newer 3.X versions are supported as -DFFT_FFTW?2 or -DFFT_FFTW3.
Building FFTW for your box should be as simple as ./configure; make. Note that on some platforms FFTW?2 has
been pre-installed, and uses renamed files indicating the precision it was compiled with, e.g. sfftw.h, or dfftw.h
instead of fftw.h. In this case, you can specify an additional define variable for FFT_INC called -DFFTW_SIZE,
which will select the correct include file. In this case, for FFT_LIB you must also manually specify the correct
library, namely -Isfftw or -l1dfftw.

The FFT_INC variable also allows for a -DFFT_SINGLE setting that will use single-precision FFTs with PPPM,
which can speed-up long-range calulations, particularly in parallel or on GPUs. Fourier transform and related

16

http://www.mcs.anl.gov/research/projects/mpich2/
http://www.open-mpi.org
http://kissfft.sf.net
http://www.fftw.org

PPPM operations are somewhat insensitive to floating point truncation errors and thus do not always need to be
performed in double precision. Using the -DFFT_SINGLE setting trades off a little accuracy for reduced memory
use and parallel communication costs for transposing 3d FFT data. Note that single precision FFTs have only
been tested with the FFTW3, FFTW2, MKL, and KISS FFT options.

Step 7

The 3 JPG variables allow you to specify a JPEG and/or PNG library which LAMMPS uses when writing out
JPEG or PNG files via the dump image command. These can be left blank if you do not use the
-DLAMMPS_JPEG or -DLAMMPS_PNG switches discussed above in Step 4, since in that case JPEG/PNG
output will be disabled.

A standard JPEG library usually goes by the name libjpeg.a or libjpeg.so and has an associated header file
jpeglib.h. Whichever JPEG library you have on your platform, you'll need to set the appropriate JPG_INC,
JPG_PATH, and JPG_LIB variables, so that the compiler and linker can find it.

A standard PNG library usually goes by the name libpng.a or libpng.so and has an associated header file png.h.
Whichever PNG library you have on your platform, you'll need to set the appropriate JPG_INC, JPG_PATH, and
JPG_LIB variables, so that the compiler and linker can find it.

As before, if these header and library files are in the usual place on your machine, you may not need to set these
variables.

Step 8

Note that by default only a few of LAMMPS optional packages are installed. To build LAMMPS with optional
packages, see this section below, before proceeding to Step 9.

Step 9

That's it. Once you have a correct Makefile.foo, you have installed the optional LAMMPS packages you want to
include in your build, and you have pre-built any other needed libraries (e.g. MPI, FFT, package libraries), all you
need to do from the src directory is type something like this:

make foo
or
gmake foo

You should get the executable Imp_foo when the build is complete.

Errors that can occur when making LAMMPS:

IMPORTANT NOTE: If an error occurs when building LAMMPS, the compiler or linker will state very explicitly
what the problem is. The error message should give you a hint as to which of the steps above has failed, and what
you need to do in order to fix it. Building a code with a Makefile is a very logical process. The compiler and
linker need to find the appropriate files and those files need to be compatible with LAMMPS source files. When a
make fails, there is usually a very simple reason, which you or a local expert will need to fix.

Here are two non-obvious errors that can occur:
(1) If the make command breaks immediately with errors that indicate it can't find files with a "*" in their names,
this can be because your machine's native make doesn't support wildcard expansion in a makefile. Try gmake

instead of make. If that doesn't work, try using a -f switch with your make command to use a pre-generated

17

Makefile.list which explicitly lists all the needed files, e.g.

make makelist
make —-f Makefile.list linux
gmake —-f Makefile.list mac

The first "make" command will create a current Makefile.list with all the file names in your src dir. The 2nd
"make" command (make or gmake) will use it to build LAMMPS. Note that you should include/exclude any
desired optional packages before using the "make makelist" command.

(2) If you get an error that says something like 'identifier "atoll" is undefined’, then your machine does not support
"long long" integers. Try using the -DLAMMPS_LONGLONG_TO_LONG setting described above in Step 4.

Additional build tips:
(1) Building LAMMPS for multiple platforms.

You can make LAMMPS for multiple platforms from the same src directory. Each target creates its own object
sub-directory called Obj_target where it stores the system-specific *.o files.

(2) Cleaning up.

Typing "make clean-all" or "make clean-machine" will delete *.o object files created when LAMMPS is built, for
either all builds or for a particular machine.

(3) Changing the LAMMPS size limits via -DLAMMPS_SMALLBIG or -DLAMMPS_BIGBIG or
-DLAMMPS_SMALLSMALL

As explained above, any of these 3 settings can be specified on the LMP_INC line in your low-level
src/MAKE/Makefile.foo.

The default is -DLAMMPS_SMALLBIG which allows for systems with up to 2263 atoms and 2763 timesteps
(about 9e18). The atom limit is for atomic systems which do not store bond topology info and thus do not require
atom IDs. If you use atom IDs for atomic systems (which is the default) or if you use a molecular model, which
stores bond topology info and thus requires atom IDs, the limit is 2731 atoms (about 2 billion). This is because the
IDs are stored in 32-bit integers.

Likewise, with this setting, the 3 image flags for each atom (see the dump doc page for a discussion) are stored in
a 32-bit integer, which means the atoms can only wrap around a periodic box (in each dimension) at most 512
times. If atoms move through the periodic box more than this many times, the image flags will "roll over", e.g.
from 511 to -512, which can cause diagnostics like the mean-squared displacement, as calculated by the compute
msd command, to be faulty.

To allow for larger atomic systems with atom IDs or larger molecular systems or larger image flags, compile with
-DLAMMPS_BIGBIG. This stores atom IDs and image flags in 64-bit integers. This enables atomic or molecular
systems with atom IDS of up to 2763 atoms (about 9e18). And image flags will not "roll over" until they reach
2720 = 1048576.

If your system does not support 8-byte integers, you will need to compile with the -DLAMMPS_SMALLSMALL

setting. This will restrict the total number of atoms (for atomic or molecular systems) and timesteps to 231
(about 2 billion). Image flags will roll over at 29 = 512.

18

Note that in src/lmptype.h there are definitions of all these data types as well as the MPI data types associated
with them. The MPI types need to be consistent with the associated C data types, or else LAMMPS will generate
a run-time error. As far as we know, the settings defined in src/lmptype.h are portable and work on every current
system.

In all cases, the size of problem that can be run on a per-processor basis is limited by 4-byte integer storage to
2731 atoms per processor (about 2 billion). This should not normally be a limitation since such a problem would
have a huge per-processor memory footprint due to neighbor lists and would run very slowly in terms of CPU
secs/timestep.

Building for a Mac:

OS X is BSD Unix, so it should just work. See the src/MAKE/Makefile.mac file.

Building for Windows:

The LAMMPS download page has an option to download both a serial and parallel pre-built Windows exeutable.
See the Running LAMMPS section for instructions for running these executables on a Windows box.

The pre-built executables are built with a subset of the available pacakges; see the download page for the list. If
you want a Windows version with specific packages included and excluded, you can build it yourself.

One way to do this is install and use cygwin to build LAMMPS with a standard Linus make, just as you would on
any Linux box; see src/MAKE/Makefile.cygwin.

The other way to do this is using Visual Studio and project files. See the src/WINDOWS directory and its
README.txt file for instructions on both a basic build and a customized build with pacakges you select.

2.3 Making LAMMPS with optional packages
This section has the following sub-sections:

¢ Package basics

¢ Including/excluding packages

¢ Packages that require extra libraries

¢ Additional Makefile settings for extra libraries

Package basics:

The source code for LAMMPS is structured as a set of core files which are always included, plus optional
packages. Packages are groups of files that enable a specific set of features. For example, force fields for
molecular systems or granular systems are in packages. You can see the list of all packages by typing "make
package" from within the src directory of the LAMMPS distribution.

If you use a command in a LAMMPS input script that is specific to a particular package, you must have built
LAMMPS with that package, else you will get an error that the style is invalid or the command is unknown.
Every command's doc page specfies if it is part of a package. You can also type

lmp_machine -h

to run your executable with the optional -h command-line switch for "help", which will list the styles and
commands known to your executable.

19

There are two kinds of packages in LAMMPS, standard and user packages. More information about the contents
of standard and user packages is given in Section_packages of the manual. The difference between standard and
user packages is as follows:

Standard packages are supported by the LAMMPS developers and are written in a syntax and style consistent
with the rest of LAMMPS. This means we will answer questions about them, debug and fix them if necessary,
and keep them compatible with future changes to LAMMPS.

User packages have been contributed by users, and always begin with the user prefix. If they are a single
command (single file), they are typically in the user-misc package. Otherwise, they are a a set of files grouped
together which add a specific functionality to the code.

User packages don't necessarily meet the requirements of the standard packages. If you have problems using a
feature provided in a user package, you will likely need to contact the contributor directly to get help. Information
on how to submit additions you make to LAMMPS as a user-contributed package is given in this section of the
documentation.

Some packages (both standard and user) require additional libraries. See more details below.

Including/excluding packages:

To use or not use a package you must include or exclude it before building LAMMPS. From the src directory, this
is typically as simple as:

make yes-colloid
make gt++

or

make no-manybody
make gt++

IMPORTANT NOTE: You should NOT include/exclude packages and build LAMMPS in a single make
command by using multiple targets, e.g. make yes-colloid g++. This is because the make procedure creates a list
of source files that will be out-of-date for the build if the package configuration changes during the same
command.

Some packages have individual files that depend on other packages being included. LAMMPS checks for this and
does the right thing. I.e. individual files are only included if their dependencies are already included. Likewise, if
a package is excluded, other files dependent on that package are also excluded.

The reason to exclude packages is if you will never run certain kinds of simulations. For some packages, this will
keep you from having to build auxiliary libraries (see below), and will also produce a smaller executable which
may run a bit faster.

When you download a LAMMPS tarball, these packages are pre-installed in the src directory: KSPACE,
MANYBODY,MOLECULE. When you download LAMMPS source files from the SVN or Git repositories, no
packages are pre-installed.

Packages are included or excluded by typing "make yes-name" or "make no-name", where "name" is the name of
the package in lower-case, e.g. name = kspace for the KSPACE package or name = user-atc for the USER-ATC

package. You can also type "make yes-standard", "make no-standard", "make yes-user", "make no-user", "make
yes-all" or "make no-all" to include/exclude various sets of packages. Type "make package" to see the all of the

20

package-related make options.

IMPORTANT NOTE: Inclusion/exclusion of a package works by simply moving files back and forth between the
main src directory and sub-directories with the package name (e.g. srtc/KSPACE, src/USER-ATC), so that the
files are seen or not seen when LAMMPS is built. After you have included or excluded a package, you must
re-build LAMMPS.

Additional package-related make options exist to help manage LAMMPS files that exist in both the src directory
and in package sub-directories. You do not normally need to use these commands unless you are editing
LAMMPS files or have downloaded a patch from the LAMMPS WWW site.

Typing "make package-update" will overwrite src files with files from the package sub-directories if the package
has been included. It should be used after a patch is installed, since patches only update the files in the package
sub-directory, but not the src files. Typing "make package-overwrite" will overwrite files in the package
sub-directories with src files.

Typing "make package-status" will show which packages are currently included. Of those that are included, it will
list files that are different in the src directory and package sub-directory. Typing "make package-diff" lists all
differences between these files. Again, type "make package" to see all of the package-related make options.

Packages that require extra libraries:

A few of the standard and user packages require additional auxiliary libraries. They must be compiled first, before
LAMMPS is built. If you get a LAMMPS build error about a missing library, this is likely the reason. See the
Section_packages doc page for a list of packages that have auxiliary libraries.

Code for some of these auxiliary libraries is included in the LAMMPS distribution under the lib directory.
Examples are the USER-ATC and MEAM packages. Some auxiliary libraries are not included with LAMMPS; to
use the associated package you must download and install the auxiliary library yourself. Examples are the KIM
and VORONOI and USER-MOLFILE packages.

For libraries with provided source code, each lib directory has a README file (e.g. lib/reax/README) with
instructions on how to build that library. Typically this is done by typing something like:

make —-f Makefile.g++

If one of the provided Makefiles is not appropriate for your system you will need to edit or add one. Note that all
the Makefiles have a setting for EXTRAMAKE at the top that names a Makefile.lammps.* file.

If successful, this will produce 2 files in the lib directory:

libpackage.a
Makefile.lammps

The Makefile.lammps file is a copy of the EXTRAMAKE file specified in the Makefile you used.

You MUST insure that the settings in Makefile.lammps are appropriate for your system. If they are not, the
LAMMPS build will fail.

As explained in the lib/package/README files, they are used to specify additional system libraries and their
locations so that LAMMPS can build with the auxiliary library. For example, if the MEAM or REAX packages
are used, the auxiliary libraries consist of FO0 code, build with a F90 complier. To link that library with
LAMMPS (a C++ code) via whatever C++ compiler LAMMPS is built with, typically requires additional

21

Fortran-to-C libraries be included in the link. Another example are the BLAS and LAPACK libraries needed to
use the USER-ATC or USER-AWPMD packages.

For libraries without provided source code, see the src/package/Makefile.lammps file for information on where to
find the library and how to build it. E.g. the file src/KIM/Makefile.lammps or src/VORONOI/Makefile.lammps or
src/UESR-MOLFILE/Makefile.lammps. These files serve the same purpose as the lib/package/Makefile.lammps
files described above. The files have settings needed when LAMMPS is built to link with the corresponding
auxiliary library. Again, you MUST insure that the settings in src/package/Makefile.lammps are appropriate for
your system and where you installed the auxiliary library. If they are not, the LAMMPS build will fail.

2.4 Building LAMMPS via the Make.py script

The src directory includes a Make.py script, written in Python, which can be used to automate various steps of the
build process.

You can run the script from the src directory by typing either:

Make.py
python Make.py

which will give you info about the tool. For the former to work, you may need to edit the 1st line of the script to
point to your local Python. And you may need to insure the script is executable:

chmod +x Make.py
The following options are supported as switches:

e i filel file2 ...

¢ -p packagel package? ...

¢ -u packagel package? ...

¢ -¢ packagel argl arg2 package? ...
® -0 dir

¢ -b machine

e -s suffix1 suffix?2 ...

e | dir

*-iN

¢ -h switch1 switch2 ...

Help on any switch can be listed by using -h, e.g.
Make.py -h -i -p

At a hi-level, these are the kinds of package management and build tasks that can be performed easily, using the
Make.py tool:

¢ install/uninstall packages and build the associated external libs (use -p and -u and -e)

¢ install packages needed for one or more input scripts (use -i and -p)

¢ build LAMMPS, either in the src dir or new dir (use -b)

e create a new dir with only the source code needed for one or more input scripts (use -i and -0)

The last bullet can be useful when you wish to build a stripped-down version of LAMMPS to run a specific

script(s). Or when you wish to move the minimal amount of files to another platform for a remote LAMMPS
build.

22

Note that using Make.py is not a substitute for insuring you have a valid src/MAKE/Maketfile.foo for your system,
or that external library Makefiles in any lib/* directories you use are also valid for your system. But once you
have done that, you can use Make.py to quickly include/exclude the packages and external libraries needed by
your input scripts.

2.5 Building LAMMPS as a library

LAMMPS can be built as either a static or shared library, which can then be called from another application or a
scripting language. See this section for more info on coupling LAMMPS to other codes. See this section for more
info on wrapping and running LAMMPS from Python.

Static library:

To build LAMMPS as a static library (*.a file on Linux), type

make makelib
make —-f Makefile.lib foo

where foo is the machine name. This kind of library is typically used to statically link a driver application to
LAMMPS, so that you can insure all dependencies are satisfied at compile time. Note that inclusion or exclusion
of any desired optional packages should be done before typing "make makelib". The first "make" command will
create a current Makefile.lib with all the file names in your src dir. The second "make" command will use it to
build LAMMPS as a static library, using the ARCHIVE and ARFLAGS settings in src/MAKE/Makefile.foo. The
build will create the file liblammps_foo.a which another application can link to.

Shared library:

To build LAMMPS as a shared library (*.so file on Linux), which can be dynamically loaded, e.g. from Python,
type

make makeshlib
make —-f Makefile.shlib foo

where foo is the machine name. This kind of library is required when wrapping LAMMPS with Python; see
Section_python for details. Again, note that inclusion or exclusion of any desired optional packages should be
done before typing "make makelib". The first "make" command will create a current Makefile.shlib with all the
file names in your src dir. The second "make" command will use it to build LAMMPS as a shared library, using
the SHFLAGS and SHLIBFLAGS settings in src/MAKE/Makefile.foo. The build will create the file
liblammps_foo.so which another application can link to dyamically. It will also create a soft link liblammps.so,
which the Python wrapper uses by default.

Note that for a shared library to be usable by a calling program, all the auxiliary libraries it depends on must also
exist as shared libraries. This will be the case for libraries included with LAMMPS, such as the dummy MPI
library in src/STUBS or any package libraries in lib/packges, since they are always built as shared libraries with
the -fPIC switch. However, if a library like MPI or FFTW does not exist as a shared library, the second make
command will generate an error. This means you will need to install a shared library version of the package. The
build instructions for the library should tell you how to do this.

As an example, here is how to build and install the MPICH library, a popular open-source version of MPI,
distributed by Argonne National Labs, as a shared library in the default /usr/local/lib location:

./configure --enable-shared
make
make install

23

http://www-unix.mcs.anl.gov/mpi

You may need to use "sudo make install" in place of the last line if you do not have write privileges for
/usr/local/lib. The end result should be the file /ust/local/lib/libmpich.so.

Additional requirement for using a shared library:

The operating system finds shared libraries to load at run-time using the environment variable
LD_LIBRARY_PATH. So you may wish to copy the file src/liblammps.so or src/liblammps_g++.so (for
example) to a place the system can find it by default, such as /ust/local/lib, or you may wish to add the LAMMPS
src directory to LD_LIBRARY_PATH, so that the current version of the shared library is always available to
programs that use it.

For the csh or tcsh shells, you would add something like this to your ~/.cshrc file:
setenv LD_LIBRARY_PATH $LD_LIBRARY _PATH:/home/sjplimp/lammps/src

Calling the LAMMPS library:

Either flavor of library (static or sharedO allows one or more LAMMPS objects to be instantiated from the calling
program.

When used from a C++ program, all of LAMMPS is wrapped in a LAMMPS_NS namespace; you can safely use
any of its classes and methods from within the calling code, as needed.

When used from a C or Fortran program or a scripting language like Python, the library has a simple
function-style interface, provided in src/library.cpp and src/library.h.

See the sample codes in examples/COUPLE/simple for examples of C++ and C and Fortran codes that invoke
LAMMPS thru its library interface. There are other examples as well in the COUPLE directory which are
discussed in Section_howto 10 of the manual. See Section_python of the manual for a description of the Python
wrapper provided with LAMMPS that operates through the LAMMPS library interface.

The files src/library.cpp and library.h define the C-style API for using LAMMPS as a library. See Section_howto
19 of the manual for a description of the interface and how to extend it for your needs.

2.6 Running LAMMPS

By default, LAMMPS runs by reading commands from stdin; e.g. Imp_linux < in.file. This means you first create
an input script (e.g. in.file) containing the desired commands. This section describes how input scripts are
structured and what commands they contain.

You can test LAMMPS on any of the sample inputs provided in the examples or bench directory. Input scripts are
named in.* and sample outputs are named log.*.name.P where name is a machine and P is the number of
processors it was run on.

Here is how you might run a standard Lennard-Jones benchmark on a Linux box, using mpirun to launch a
parallel job:

cd src

make linux

cp lmp_linux ../bench

cd ../bench

mpirun -np 4 lmp_linux <in.lj

See this page for timings for this and the other benchmarks on various platforms.

24

http://lammps.sandia.gov/bench.html

On a Windows box, you can skip making LAMMPS and simply download an executable, as described above,
though the pre-packaged executables include only certain packages.

To run a LAMMPS executable on a Windows machine, first decide whether you want to download the non-MPI
(serial) or the MPI (parallel) version of the executable. Download and save the version you have chosen.

For the non-MPI version, follow these steps:

¢ Get a command prompt by going to Start->Run... , then typing "cmd".

® Move to the directory where you have saved Imp_win_no-mpi.exe (e.g. by typing: cd "Documents").

¢ At the command prompt, type "Imp_win_no-mpi -in in.lj", replacing in.lj with the name of your
LAMMPS input script.

For the MPI version, which allows you to run LAMMPS under Windows on multiple processors, follow these
steps:

¢ Download and install MPICH?2 for Windows.

¢ You'll need to use the mpiexec.exe and smpd.exe files from the MPICH2 package. Put them in same
directory (or path) as the LAMMPS Windows executable.

¢ Get a command prompt by going to Start->Run... , then typing "cmd".

® Move to the directory where you have saved Imp_win_mpi.exe (e.g. by typing: cd "Documents").

¢ Then type something like this: "mpiexec -np 4 -localonly Imp_win_mpi -in in.lj", replacing in.lj with the
name of your LAMMPS input script.

¢ Note that you may need to provide smpd with a passphrase --- it doesn't matter what you type.

¢ [n this mode, output may not immediately show up on the screen, so if your input script takes a long time
to execute, you may need to be patient before the output shows up.

¢ Alternatively, you can still use this executable to run on a single processor by typing something like:
"Imp_win_mpi -in in.]j".

The screen output from LAMMPS is described in the next section. As it runs, LAMMPS also writes a log.lammps
file with the same information.

Note that this sequence of commands copies the LAMMPS executable (Imp_linux) to the directory with the input
files. This may not be necessary, but some versions of MPI reset the working directory to where the executable is,
rather than leave it as the directory where you launch mpirun from (if you launch Imp_linux on its own and not
under mpirun). If that happens, LAMMPS will look for additional input files and write its output files to the
executable directory, rather than your working directory, which is probably not what you want.

If LAMMPS encounters errors in the input script or while running a simulation it will print an ERROR message
and stop or a WARNING message and continue. See Section_errors for a discussion of the various kinds of errors
LAMMPS can or can't detect, a list of all ERROR and WARNING messages, and what to do about them.

LAMMPS can run a problem on any number of processors, including a single processor. In theory you should get
identical answers on any number of processors and on any machine. In practice, numerical round-off can cause
slight differences and eventual divergence of molecular dynamics phase space trajectories.

LAMMPS can run as large a problem as will fit in the physical memory of one or more processors. If you run out
of memory, you must run on more processors or setup a smaller problem.

25

http://www.mcs.anl.gov/research/projects/mpich2/downloads/index.php?s=downloads

2.7 Command-line options

At run time, LAMMPS recognizes several optional command-line switches which may be used in any order.
Either the full word or a one-or-two letter abbreviation can be used:

® —c or -cuda

® ¢ or -echo

® _jor -in

¢ -h or -help

e -lor-log

® _nc or -nocite
® _p or -partition
¢ -pl or -plog

® _ps or -pscreen
® _r or -restart

® _ro or -reorder
® _SC Or -screen
e _sf or -suffix

® -y Oor -var

For example, Imp_ibm might be launched as follows:

mpirun -np 16 lmp_ibm -v f tmp.out -1 my.log —-sc none <in.alloy
mpirun -np 16 lmp_ibm -var f tmp.out -log my.log —-screen none <in.alloy

Here are the details on the options:

—-cuda on/off

Explicitly enable or disable CUDA support, as provided by the USER-CUDA package. If LAMMPS is built with
this package, as described above in Section 2.3, then by default LAMMPS will run in CUDA mode. If this switch
is set to "off", then it will not, even if it was built with the USER-CUDA package, which means you can run
standard LAMMPS or with the GPU package for testing or benchmarking purposes. The only reason to set the
switch to "on", is to check if LAMMPS was built with the USER-CUDA package, since an error will be generated
if it was not.

—echo style

Set the style of command echoing. The style can be none or screen or log or both. Depending on the style, each
command read from the input script will be echoed to the screen and/or logfile. This can be useful to figure out
which line of your script is causing an input error. The default value is log. The echo style can also be set by using
the echo command in the input script itself.

—-in file

Specify a file to use as an input script. This is an optional switch when running LAMMPS in one-partition mode.
If it is not specified, LAMMPS reads its input script from stdin - e.g. Imp_linux < in.run. This is a required switch
when running LAMMPS in multi-partition mode, since multiple processors cannot all read from stdin.

—help

Print a list of options compiled into this executable for each LAMMPS style (atom_style, fix, compute, pair_style,
bond_style, etc). This can help you know if the command you want to use was included via the appropriate

26

package. LAMMPS will print the info and immediately exit if this switch is used.
-log file

Specify a log file for LAMMPS to write status information to. In one-partition mode, if the switch is not used,
LAMMPS writes to the file log.lammps. If this switch is used, LAMMPS writes to the specified file. In
multi-partition mode, if the switch is not used, a log.lammps file is created with hi-level status information. Each
partition also writes to a log.lammps.N file where N is the partition ID. If the switch is specified in multi-partition
mode, the hi-level logfile is named "file" and each partition also logs information to a file.N. For both
one-partition and multi-partition mode, if the specified file is "none", then no log files are created. Using a log
command in the input script will override this setting. Option -plog will override the name of the partition log
files file.N.

-nocite

Disable writing the log.cite file which is normally written to list references for specific cite-able features used
during a LAMMPS run. See the citation page for more details.

-partition 8x2 4 5

Invoke LAMMPS in multi-partition mode. When LAMMPS is run on P processors and this switch is not used,
LAMMPS runs in one partition, i.e. all P processors run a single simulation. If this switch is used, the P
processors are split into separate partitions and each partition runs its own simulation. The arguments to the
switch specify the number of processors in each partition. Arguments of the form MxN mean M partitions, each
with N processors. Arguments of the form N mean a single partition with N processors. The sum of processors in
all partitions must equal P. Thus the command "-partition 8x2 4 5" has 10 partitions and runs on a total of 25
processors.

Running with multiple partitions can e useful for running multi-replica simulations, where each replica runs on on
one or a few processors. Note that with MPI installed on a machine (e.g. your desktop), you can run on more
(virtual) processors than you have physical processors.

To run multiple independent simulatoins from one input script, using multiple partitions, see Section_howto 4 of
the manual. World- and universe-style variables are useful in this context.

-plog file

Specify the base name for the partition log files, so partition N writes log information to file.N. If file is none,
then no partition log files are created. This overrides the filename specified in the -log command-line option. This
option is useful when working with large numbers of partitions, allowing the partition log files to be suppressed
(-plog none) or placed in a sub-directory (-plog replica_files/log.lammps) If this option is not used the log file for
partition N is log.Jlammps.N or whatever is specified by the -log command-line option.

-pscreen file

Specify the base name for the partition screen file, so partition N writes screen information to file.N. If file is
none, then no partition screen files are created. This overrides the filename specified in the -screen command-line
option. This option is useful when working with large numbers of partitions, allowing the partition screen files to
be suppressed (-pscreen none) or placed in a sub-directory (-pscreen replica_files/screen). If this option is not
used the screen file for partition N is screen.N or whatever is specified by the -screen command-line option.

-restart restartfile datafile keyword value ...

27

http://lammps.sandia.gov/cite.html

Convert the restart file into a data file and immediately exit. This is the same operation as if the following 2-line
input script were run:

read_restart restartfile
write_data datafile keyword value ...

Note that the specified restartfile and datafile can have wild-card characters ("*",%") as described by the
read_restart and write_data commands. But a filename such as file.* will need to be enclosed in quotes to avoid
shell expansion of the "*" character.

Also note that following datafile, the same optional keyword/value pairs can be listed as used by the write_data
command.

—-reorder nth N
-reorder custom filename

Reorder the processors in the MPI communicator used to instantiate LAMMPS, in one of several ways. The
original MPI communicator ranks all P processors from 0 to P-1. The mapping of these ranks to physical
processors is done by MPI before LAMMPS begins. It may be useful in some cases to alter the rank order. E.g. to
insure that cores within each node are ranked in a desired order. Or when using the run_style verlet/split
command with 2 partitions to insure that a specific Kspace processor (in the 2nd partition) is matched up with a
specific set of processors in the 1st partition. See the Section_accelerate doc pages for more details.

If the keyword nth is used with a setting NV, then it means every Nth processor will be moved to the end of the
ranking. This is useful when using the run_style verlet/split command with 2 partitions via the -partition
command-line switch. The first set of processors will be in the first partition, the 2nd set in the 2nd partition. The
-reorder command-line switch can alter this so that the 1st N procs in the 1st partition and one proc in the 2nd
partition will be ordered consecutively, e.g. as the cores on one physical node. This can boost performance. For
example, if you use "-reorder nth 4" and "-partition 9 3" and you are running on 12 processors, the processors will
be reordered from

0123456789 1011

to

012456289103 711

so that the processors in each partition will be

01245638910
37 11

See the "processors” command for how to insure processors from each partition could then be grouped optimally
for quad-core nodes.

If the keyword is custom, then a file that specifies a permutation of the processor ranks is also specified. The
format of the reorder file is as follows. Any number of initial blank or comment lines (starting with a "#"
character) can be present. These should be followed by P lines of the form:

IJ
where P is the number of processors LAMMPS was launched with. Note that if running in multi-partition mode

(see the -partition switch above) P is the total number of processors in all partitions. The I and J values describe a
permutation of the P processors. Every I and J should be values from O to P-1 inclusive. In the set of P I values,

28

every proc ID should appear exactly once. Ditto for the set of P J values. A single I,J pairing means that the
physical processor with rank I in the original MPI communicator will have rank J in the reordered communicator.

Note that rank ordering can also be specified by many MPI implementations, either by environment variables that
specify how to order physical processors, or by config files that specify what physical processors to assign to each
MPI rank. The -reorder switch simply gives you a portable way to do this without relying on MPI itself. See the
processors out command for how to output info on the final assignment of physical processors to the LAMMPS
simulation domain.

—-screen file

Specify a file for LAMMPS to write its screen information to. In one-partition mode, if the switch is not used,
LAMMPS writes to the screen. If this switch is used, LAMMPS writes to the specified file instead and you will
see no screen output. In multi-partition mode, if the switch is not used, hi-level status information is written to the
screen. Each partition also writes to a screen.N file where N is the partition ID. If the switch is specified in
multi-partition mode, the hi-level screen dump is named "file" and each partition also writes screen information to
a file.N. For both one-partition and multi-partition mode, if the specified file is "none", then no screen output is
performed. Option -pscreen will override the name of the partition screen files file.N.

-suffix style

Use variants of various styles if they exist. The specified style can be opt, omp, gpu, or cuda. These refer to
optional packages that LAMMPS can be built with, as described above in Section 2.3. The "opt" style corrsponds
to the OPT package, the "omp" style to the USER-OMP package, the "gpu" style to the GPU package, and the
"cuda" style to the USER-CUDA package.

As an example, all of the packages provide a pair_style lj/cut variant, with style names lj/cut/opt, lj/cut/omp,
lj/cut/gpu, or lj/cut/cuda. A variant styles can be specified explicitly in your input script, e.g. pair_style lj/cut/gpu.
If the -suffix switch is used, you do not need to modify your input script. The specified suffix (opt,omp,gpu,cuda)
is automatically appended whenever your input script command creates a new atom, pair, fix, compute, or run
style. If the variant version does not exist, the standard version is created.

For the GPU package, using this command-line switch also invokes the default GPU settings, as if the command
"package gpu force/neigh 0 0 1" were used at the top of your input script. These settings can be changed by using
the package gpu command in your script if desired.

For the OMP package, using this command-line switch also invokes the default OMP settings, as if the command
"package omp *" were used at the top of your input script. These settings can be changed by using the package
omp command in your script if desired.

The suffix command can also set a suffix and it can also turn off/on any suffix setting made via the command line.

-var name valuel value2 ...

Specify a variable that will be defined for substitution purposes when the input script is read. "Name" is the
variable name which can be a single character (referenced as $x in the input script) or a full string (referenced as
${abc}). An index-style variable will be created and populated with the subsequent values, e.g. a set of filenames.
Using this command-line option is equivalent to putting the line "variable name index valuel value2 ..." at the
beginning of the input script. Defining an index variable as a command-line argument overrides any setting for
the same index variable in the input script, since index variables cannot be re-defined. See the variable command
for more info on defining index and other kinds of variables and this section for more info on using variables in
input scripts.

29

NOTE: Currently, the command-line parser looks for arguments that start with "-" to indicate new switches. Thus
you cannot specify multiple variable values if any of they start with a "-", e.g. a negative numeric value. It is OK

non

if the first valuel starts with a "-", since it is automatically skipped.

2.8 LAMMPS screen output

As LAMMPS reads an input script, it prints information to both the screen and a log file about significant actions
it takes to setup a simulation. When the simulation is ready to begin, LAMMPS performs various initializations
and prints the amount of memory (in MBytes per processor) that the simulation requires. It also prints details of
the initial thermodynamic state of the system. During the run itself, thermodynamic information is printed
periodically, every few timesteps. When the run concludes, LAMMPS prints the final thermodynamic state and a
total run time for the simulation. It then appends statistics about the CPU time and storage requirements for the
simulation. An example set of statistics is shown here:

Loop time of 49.002 on 2 procs for 2004 atoms

Pair time (%) = 35.0495 (71.5267)
Bond time (%) = 0.092046 (0.187841)
Kspce time (%) = 6.42073 (13.103)
Neigh time (%) = 2.73485 (5.5811)

Comm time (%) = 1.50291 (3.06703)
Outpt time (%) = 0.013799 (0.0281601)
Other time (%) = 2.13669 (4.36041)
Nlocal: 1002 ave, 1015 max, 989 min
Histogram: 1 0 0 0 0 0 0 0 0 1

Nghost: 8720 ave, 8724 max, 8716 min
Histogram: 1 0 0 0 0 0 0 0 0 1

Neighs: 354141 ave, 361422 max, 346860 min

Histogram: 1 0 0 0 0 0 0 0 0 1

Total # of neighbors = 708282

Ave neighs/atom = 353.434

Ave special neighs/atom = 2.34032
Number of reneighborings = 42
Dangerous reneighborings = 2

The first section gives the breakdown of the CPU run time (in seconds) into major categories. The second section
lists the number of owned atoms (Nlocal), ghost atoms (Nghost), and pair-wise neighbors stored per processor.
The max and min values give the spread of these values across processors with a 10-bin histogram showing the
distribution. The total number of histogram counts is equal to the number of processors.

The last section gives aggregate statistics for pair-wise neighbors and special neighbors that LAMMPS keeps
track of (see the special_bonds command). The number of times neighbor lists were rebuilt during the run is given
as well as the number of potentially "dangerous" rebuilds. If atom movement triggered neighbor list rebuilding
(see the neigh_modify command), then dangerous reneighborings are those that were triggered on the first
timestep atom movement was checked for. If this count is non-zero you may wish to reduce the delay factor to
insure no force interactions are missed by atoms moving beyond the neighbor skin distance before a rebuild takes
place.

If an energy minimization was performed via the minimize command, additional information is printed, e.g.

Minimization stats:
E initial, next-to-last, final = -0.895962 -2.94193 -2.94342
Gradient 2-norm init/final= 1920.78 20.9992
Gradient inf-norm init/final= 304.283 9.61216
Iterations = 36

30

Force evaluations = 177

The first line lists the initial and final energy, as well as the energy on the next-to-last iteration. The next 2 lines
give a measure of the gradient of the energy (force on all atoms). The 2-norm is the "length" of this force vector;
the inf-norm is the largest component. The last 2 lines are statistics on how many iterations and force-evaluations
the minimizer required. Multiple force evaluations are typically done at each iteration to perform a 1d line
minimization in the search direction.

If a kspace_style long-range Coulombics solve was performed during the run (PPPM, Ewald), then additional
information is printed, e.g.

FFT time (% of Kspce) = 0.200313 (8.34477)
FFT Gflps 3d ld-only = 2.31074 9.19989

The first line gives the time spent doing 3d FFTs (4 per timestep) and the fraction it represents of the total KSpace
time (listed above). Each 3d FFT requires computation (3 sets of 1d FFTs) and communication (transposes). The
total flops performed is SNlog_2(N), where N is the number of points in the 3d grid. The FFTs are timed with and
without the communication and a Gflop rate is computed. The 3d rate is with communication; the 1d rate is
without (just the 1d FFTs). Thus you can estimate what fraction of your FFT time was spent in communication,
roughly 75% in the example above.

2.9 Tips for users of previous LAMMPS versions

The current C++ began with a complete rewrite of LAMMPS 2001, which was written in F90. Features of earlier
versions of LAMMPS are listed in Section_history. The FO90 and F77 versions (2001 and 99) are also freely
distributed as open-source codes; check the LAMMPS WWW Site for distribution information if you prefer those
versions. The 99 and 2001 versions are no longer under active development; they do not have all the features of
C++ LAMMPS.

If you are a previous user of LAMMPS 2001, these are the most significant changes you will notice in C++
LAMMPS:

(1) The names and arguments of many input script commands have changed. All commands are now a single
word (e.g. read_data instead of read data).

(2) All the functionality of LAMMPS 2001 is included in C++ LAMMPS, but you may need to specify the
relevant commands in different ways.

(3) The format of the data file can be streamlined for some problems. See the read_data command for details. The
data file section "Nonbond Coeff" has been renamed to "Pair Coeff" in C++ LAMMPS.

(4) Binary restart files written by LAMMPS 2001 cannot be read by C++ LAMMPS with a read_restart
command. This is because they were output by F90 which writes in a different binary format than C or C++ writes
or reads. Use the restart2data tool provided with LAMMPS 2001 to convert the 2001 restart file to a text data
file. Then edit the data file as necessary before using the C++ LAMMPS read_data command to read it in.

(5) There are numerous small numerical changes in C++ LAMMPS that mean you will not get identical answers

when comparing to a 2001 run. However, your initial thermodynamic energy and MD trajectory should be close if
you have setup the problem for both codes the same.

31

http://lammps.sandia.gov

Previous Section - LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands - Next Section

3. Commands

This section describes how a LAMMPS input script is formatted and the input script commands used to define a
LAMMPS simulation.

3.1 LAMMPS input script

3.2 Parsing rules

3.3 Input script structure

3.4 Commands listed by category
3.5 Commands listed alphabetically

3.1 LAMMPS input script

LAMMPS executes by reading commands from a input script (text file), one line at a time. When the input script
ends, LAMMPS exits. Each command causes LAMMPS to take some action. It may set an internal variable, read
in a file, or run a simulation. Most commands have default settings, which means you only need to use the
command if you wish to change the default.

In many cases, the ordering of commands in an input script is not important. However the following rules apply:
(1) LAMMPS does not read your entire input script and then perform a simulation with all the settings. Rather,
the input script is read one line at a time and each command takes effect when it is read. Thus this sequence of

commands:

timestep 0.5
run 100
run 100

does something different than this sequence:

run 100
timestep 0.5
run 100

In the first case, the specified timestep (0.5 fmsec) is used for two simulations of 100 timesteps each. In the 2nd
case, the default timestep (1.0 fmsec) is used for the 1st 100 step simulation and a 0.5 fmsec timestep is used for
the 2nd one.

(2) Some commands are only valid when they follow other commands. For example you cannot set the
temperature of a group of atoms until atoms have been defined and a group command is used to define which
atoms belong to the group.

(3) Sometimes command B will use values that can be set by command A. This means command A must precede
command B in the input script if it is to have the desired effect. For example, the read_data command initializes
the system by setting up the simulation box and assigning atoms to processors. If default values are not desired,
the processors and boundary commands need to be used before read_data to tell LAMMPS how to map
processors to the simulation box.

32

http://lammps.sandia.gov

Many input script errors are detected by LAMMPS and an ERROR or WARNING message is printed. This
section gives more information on what errors mean. The documentation for each command lists restrictions on
how the command can be used.

3.2 Parsing rules

Each non-blank line in the input script is treated as a command. LAMMPS commands are case sensitive.
Command names are lower-case, as are specified command arguments. Upper case letters may be used in file
names or user-chosen ID strings.

Here is how each line in the input script is parsed by LAMMPS:

(1) If the last printable character on the line is a "&" character (with no surrounding quotes), the command is
assumed to continue on the next line. The next line is concatenated to the previous line by removing the "&"
character and newline. This allows long commands to be continued across two or more lines.

(2) All characters from the first "#" character onward are treated as comment and discarded. See an exception in
(6). Note that a comment after a trailing "&" character will prevent the command from continuing on the next
line. Also note that for multi-line commands a single leading "#" will comment out the entire command.

(3) The line is searched repeatedly for $ characters, which indicate variables that are replaced with a text string.
See an exception in (6).

If the $ is followed by curly brackets, then the variable name is the text inside the curly brackets. If no curly
brackets follow the $, then the variable name is the single character immediately following the $. Thus
${myTemp} and $x refer to variable names "myTemp" and "x".

How the variable is converted to a text string depends on what style of variable it is; see the variable doc page for
details. It can be a variable that stores multiple text strings, and return one of them. The returned text string can be
multiple "words" (space separated) which will then be interpreted as multiple arguments in the input command.
The variable can also store a numeric formula which will be evaluated and its numeric result returned as a string.

As a special case, if the $ is followed by parenthesis, then the text inside the parenthesis is treated as an
"immediate" variable and evaluated as an equal-style variable. This is a way to use numeric formulas in an input
script without having to assign them to variable names. For example, these 3 input script lines:

variable X equal (xlo+xhi)/2+sqrt (v_area)
region 1 block $X 2 INF INF EDGE EDGE
variable X delete

can be replaced by
region 1 block $((xlo+xhi)/2+sqrt (v_area)) 2 INF INF EDGE EDGE
so that you do not have to define (or discard) a temporary variable X.

Note that neither the curly-bracket or immediate form of variables can contain nested $ characters for other
variables to substitute for. Thus you cannot do this:

variable a equal 2
variable b2 equal 4
print "B2 = S${bsa}"

33

Nor can you specify this $($x-1.0) for an immediate variable, but you could use $(v_x-1.0), since the latter is
valid syntax for an equal-style variable.

See the variable command for more details of how strings are assigned to variables and evaluated, and how they
can be used in input script commands.

(4) The line is broken into "words" separated by whitespace (tabs, spaces). Note that words can thus contain
letters, digits, underscores, or punctuation characters.

(5) The first word is the command name. All successive words in the line are arguments.
(6) If you want text with spaces to be treated as a single argument, it can be enclosed in either double or single

quotes. A long single argument enclosed in quotes can even span multiple lines if the "&" character is used, as
described above. E.g.

print "Volume Sv"

print 'Volume = $v'

variable a string "red green blue &
purple orange cyan"

if "$steps > 1000" then quit

The quotes are removed when the single argument is stored internally.

See the dump modify format or print or if commands for examples. A "#" or "$" character that is between quotes
will not be treated as a comment indicator in (2) or substituted for as a variable in (3).

IMPORTANT NOTE: If the argument is itself a command that requires a quoted argument (e.g. using a print
command as part of an if or run every command), then the double and single quotes can be nested in the usual
manner. See the doc pages for those commands for examples. Only one of level of nesting is allowed, but that
should be sufficient for most use cases.

3.3 Input script structure
This section describes the structure of a typical LAMMPS input script. The "examples" directory in the LAMMPS
distribution contains many sample input scripts; the corresponding problems are discussed in Section_example,
and animated on the LAMMPS WWW Site.
A LAMMPS input script typically has 4 parts:

1. Initialization

2. Atom definition

3. Settings

4. Run a simulation
The last 2 parts can be repeated as many times as desired. L.e. run a simulation, change some settings, run some
more, etc. Each of the 4 parts is now described in more detail. Remember that almost all the commands need only
be used if a non-default value is desired.
(1) Initialization

Set parameters that need to be defined before atoms are created or read-in from a file.

The relevant commands are units, dimension, newton, processors, boundary, atom_style, atom_modify.

34

http://lammps.sandia.gov

If force-field parameters appear in the files that will be read, these commands tell LAMMPS what kinds of force
fields are being used: pair_style, bond_style, angle_style, dihedral_style, improper_style.

(2) Atom definition

There are 3 ways to define atoms in LAMMPS. Read them in from a data or restart file via the read_data or
read_restart commands. These files can contain molecular topology information. Or create atoms on a lattice
(with no molecular topology), using these commands: lattice, region, create_box, create_atoms. The entire set of
atoms can be duplicated to make a larger simulation using the replicate command.

(3) Settings

Once atoms and molecular topology are defined, a variety of settings can be specified: force field coefficients,
simulation parameters, output options, etc.

Force field coefficients are set by these commands (they can also be set in the read-in files): pair_coeff,
bond_coeff, angle_coeff, dihedral_coeff, improper_coeff, kspace_style, dielectric, special_bonds.

Various simulation parameters are set by these commands: neighbor, neigh_modify, group, timestep,
reset_timestep, run_style, min_style, min_modify.

Fixes impose a variety of boundary conditions, time integration, and diagnostic options. The fix command comes
in many flavors.

Various computations can be specified for execution during a simulation using the compute, compute_modity,
and variable commands.

Output options are set by the thermo, dump, and restart commands.
(4) Run a simulation
A molecular dynamics simulation is run using the run command. Energy minimization (molecular statics) is

performed using the minimize command. A parallel tempering (replica-exchange) simulation can be run using the
temper command.

3.4 Commands listed by category

This section lists all LAMMPS commands, grouped by category. The next section lists the same commands
alphabetically. Note that some style options for some commands are part of specific LAMMPS packages, which
means they cannot be used unless the package was included when LAMMPS was built. Not all packages are
included in a default LAMMPS build. These dependencies are listed as Restrictions in the command's
documentation.

Initialization:

atom_modify, atom_style, boundary, dimension, newton, processors, units

Atom definition:

create_atoms, create_box, lattice, read_data, read_dump, read_restart, region, replicate

35

Force fields:

angle_coeff, angle_style, bond_coeff, bond_style, dielectric, dihedral_coeff, dihedral_style, improper_coeff,
improper_style, kspace_modify, kspace_style, pair_coeff, pair_modify, pair_style, pair_write, special_bonds

Settings:

communicate, group, mass, min_modify, min_style, neigh_modify, neighbor, reset_timestep, run_style, set,
timestep, velocity

Fixes:

fix, fix_modify, unfix

Computes:

compute, compute_modify, uncompute
Output:

dump, dump image, dump_modify, dump movie, restart, thermo, thermo_modify, thermo_style, undump,
write_data, write_dump, write_restart

Actions:
delete_atoms, delete_bonds, displace_atoms, change_box, minimize, neb prd, rerun, run, temper
Miscellaneous:

clear, echo, if, include, jump, label, log, next, print, shell, variable

3.5 Individual commands

This section lists all LAMMPS commands alphabetically, with a separate listing below of styles within certain
commands. The previous section lists the same commands, grouped by category. Note that some style options for
some commands are part of specific LAMMPS packages, which means they cannot be used unless the package
was included when LAMMPS was built. Not all packages are included in a default LAMMPS build. These
dependencies are listed as Restrictions in the command's documentation.

angle_coeff angle_style atom_modify | atom_style balance bond_coeff
bond_style boundary box change_box clear communicate
compute [compute_modify| create_atoms | create_box | delete_atoms |delete_bonds
dielectric dihedral_coeff | dihedral_style | dimension |displace_atoms dump
dump image | dump_modify | dump movie echo fix fix_modify
group if improper_coeff |improper_style include jump
kspace_modify| kspace_style label lattice log mass
minimize min_modify min_style molecule neb neigh_modify
neighbor newton next package pair_coeff | pair_modify
pair_style pair_write partition prd print processors
quit read_data read_dump read_restart region replicate

36

rerun reset_timestep restart run run_style set
shell special_bonds suffix tad temper thermo

thermo_modify| thermo_style timestep uncompute undump unfix
units variable velocity write_data write_dump | write_restart

These are commands contributed by users, which can be used if LAMMPS is built with the appropriate package.

Fix styles

See the fix command for one-line descriptions of each style or click on the style itself for a full description:

adapt addforce append/atoms aveforce ave/atom |ave/correlate| ave/histo ave/spatial
ave/time balance bond/break bond/create bond/swap | box/relax deform deposit
drag dt/reset efield enforce2d evaporate external freeze gcme
gld gravity heat indent langevin lineforce |momentum move
msst neb nph nphug nph/asphere | nph/sphere npt npt/asphere
npt/sphere nve nve/asphere [nve/asphere/noforce| nve/body nve/limit nve/line nve/noforce
nve/sphere nve/tri nvt nvt/asphere nvt/sllod nvt/sphere | orient/fcc planeforce
poems pour press/berendsen print property/atom| qgeqg/comb |reax/bonds recenter
restrain rigid rigid/nph rigid/npt rigid/nve rigid/nvt | rigid/small setforce
shake spring spring/rg spring/self srd store/force | store/state |temp/berendsen
temp/rescale |thermal/conductivity tmd ttm tune/kspace | viscosity viscous wall/colloid
wall/gran wall/harmonic wall/lj1043 wall/lj126 wall/lj93 wall/piston |wall/reflect| wall/region
wall/srd

These are fix styles contributed by users, which can be used if LAMMPS is built with the appropriate package.

addtorque atc colvars imd langevin/eff Ib/fluid
Ib/momentum Ib/pc Ib/rigid/pc/sphere|lb/viscous meso meso/stationary
nph/eff npt/eff nve/eff nvt/eff | nvt/sllod/eff phonon
geqg/reax |reax/c/bonds| reax/c/species smd [temp/rescale/eff ti/rs
ti/spring
These are accelerated fix styles, which can be used if LAMMPS is built with the appropriate accelerated package.
freeze/cuda addforce/cuda aveforce/cuda enforce2d/cuda gravity/cuda | gravity/omp
nph/omp nphug/omp nph/asphere/omp nph/sphere/omp npt/cuda npt/omp
npt/asphere/omp| npt/sphere/omp nve/cuda nve/omp nve/sphere/omp| nvt/cuda
nvt/omp nvt/asphere/omp nvt/sllod/omp nvt/sphere/omp geg/comb/omp | rigid/omp
rigid/nph/omp rigid/npt/omp rigid/nve/omp rigid/nvt/omp rigid/small/omp [setforce/cuda
shake/cuda |temp/berendsen/cuda|temp/rescale/cuda|temp/rescale/limit/cuda| viscous/cuda
Compute styles

See the compute command for one-line descriptions of each style or click on the style itself for a full description:

37

angle/local |atom/molecule body/local bond/local centro/atom cluster/atom
cna/atom com com/molecule contact/atom coord/atom damage/atom
dihedral/local |displace/atom | erotate/asphere erotate/rigid |erotate/sphere |erotate/sphere/atom
event/displace | group/group gyration gyration/molecule| heat/flux improper/local
inertia/molecule ke ke/atom ke/rigid msd msd/molecule
msd/nongauss pair pair/local pe pe/atom pressure
property/atom | property/local [property/molecule rdf reduce reduce/region
slice stress/atom temp temp/asphere temp/com temp/deform
temp/partial | temp/profile temp/ramp temp/region temp/sphere ti
vacf voronoi/atom

These are compute styles contributed by users, which can be used if LAMMPS is built with the appropriate
package.

keleff ke/atom/eff

temp/deform/eff|temp/region/eff| temp/rotate

These are accelerated compute styles, which can be used if LAMMPS is built with the appropriate accelerated
package.

ackland/atom |basal/atom meso_e/atom |meso_rho/atom

meso_t/atom | temp/eff

|pe/cuda|pressure/cuda temp/cuda |temp/partial/cuda

Pair_style potentials

See the pair_style command for an overview of pair potentials. Click on the style itself for a full description:

none hybrid hybrid/overlay adp
airebo beck body bop
born born/coul/long born/coul/msm born/coul/wolf
brownian brownian/poly buck buck/coul/cut
buck/coul/long buck/coul/msm buck/long/coul/long colloid
comb comb3 coul/cut coul/debye
coul/dsf coul/long coul/msm coul/wolf
dpd dpd/tstat dsmc eam
eam/alloy eam/fs eim gauss
gayberne gran/hertz/history gran/hooke gran/hooke/history
hbond/dreiding/lj hbond/dreiding/morse kim Icbop
line/lj lj/charmm/coul/charmm |lj/charmm/coul/charmm/implicit|lj/charmm/coul/long
lj/charmm/coul/msm lj/class2 lj/class2/coul/cut lj/class2/coul/long
lj/cut lj/cut/coul/cut lj/cut/coul/debye lj/cut/coul/dsf
lj/cut/coul/long lj/cut/coul/msm lj/cut/dipole/cut lj/cut/dipole/long
lj/cut/tip4p/cut lj/cut/tip4p/long lj/expand lj/gromacs
lj/gromacs/coul/gromacs lj/long/coul/long lj/long/dipole/long lj/long/tip4p/long
lj/smooth lj/smooth/linear 1j96/cut lubricate
lubricate/poly lubricateU lubricateU/poly meam
mie/cut morse nb3b/harmonic nm/cut
nm/cut/coul/cut nm/cut/coul/long peri/lps peri/pmb

38

peri/ves reax rebo resquared
soft SW table tersoff
tersoff/mod tersoff/zbl tip4p/cut tip4p/long
tri/lj yukawa yukawa/colloid zbl
These are pair styles contributed by users, which can be used if LAMMPS is built with the appropriate package.
awpmd/cut coul/diel eam/cd edip
eff/cut gauss/cut list lj/cut/dipole/sf
1j/sdk lj/sdk/coul/long |lj/sdk/coul/msm lj/st
meam/spline meam/sw/spline reax/c sph/heatconduction
sph/idealgas sph/lj sph/rhosum sph/taitwater
sph/taitwater/morris| tersoff/table
These are accelerated pair styles, which can be used if LAMMPS is built with the appropriate accelerated
package.
adp/omp airebo/omp beck/gpu beck/omp
born/coul/long/cuda born/coul/long/gpu born/coul/long/omp born/coul/msm/omp
born/coul/wolf/gpu born/coul/wolf/omp born/gpu born/omp
brownian/omp brownian/poly/omp buck/coul/cut/cuda buck/coul/cut/gpu
buck/coul/cut/omp buck/coul/long/cuda buck/coul/long/gpu buck/coul/long/omp
buck/coul/msm/omp buck/cuda buck/long/coul/long/omp buck/gpu
buck/omp colloid/gpu colloid/omp comb/omp
coul/cut/omp coul/debye/omp coul/dsf/gpu coul/dsf/omp
coul/long/gpu coul/long/omp coul/msm/omp coul/wolf
dpd/omp dpd/tstat/omp eam/alloy/cuda eam/alloy/gpu
eam/alloy/omp eam/alloy/opt eam/cd/omp eam/cuda
eam/fs/cuda eam/fs/gpu eam/fs/omp eam/fs/opt
eam/gpu eam/omp eam/opt edip/omp
eim/omp gauss/gpu gauss/omp gayberne/gpu
gayberne/omp gran/hertz/history/omp gran/hooke/cuda gran/hooke/history/omp
gran/hooke/omp hbond/dreiding/lj/omp hbond/dreiding/morse/omp line/lj/omp

lj/charmm/coul/charmm/cuda

lj/charmm/coul/charmm/omp

lj/charmm/coul/charmm/implicit/cuda

lj/charmm/coul/charmm/implicit/o

lj/charmm/coul/long/cuda

lj/charmm/coul/long/gpu

lj/charmm/coul/long/omp

lj/charmm/coul/long/opt

lj/class2/coul/cut/cuda

lj/class2/coul/cut/omp

lj/class2/coul/long/cuda

lj/class2/coul/long/gpu

lj/class2/coul/long/omp lj/class2/coul/msm/omp lj/class2/cuda lj/class2/gpu
lj/class2/omp lj/long/coul/long/omp lj/cut/coul/cut/cuda lj/cut/coul/cut/gpu
lj/cut/coul/cut/omp lj/cut/coul/debye/cuda lj/cut/coul/debye/gpu lj/cut/coul/debye/omp
lj/cut/coul/dst/gpu lj/cut/coul/dsf/omp lj/cut/coul/long/cuda lj/cut/coul/long/gpu
lj/cut/coul/long/omp lj/cut/coul/long/opt lj/cut/coul/msm/gpu lj/cut/coul/msm/opt
lj/cut/cuda lj/cut/dipole/cut/gpu lj/cut/dipole/cut/omp lj/cut/dipole/st/gpu
lj/cut/dipole/st/omp lj/cut/experimental/cuda lj/cut/gpu lj/cut/omp
lj/cut/opt lj/cut/tip4p/cut/omp lj/cut/tip4p/long/omp lj/cut/tip4p/long/opt
lj/expand/cuda lj/expand/gpu lj/expand/omp lj/gromacs/coul/gromacs/cuda
lj/gromacs/coul/gromacs/omp lj/gromacs/cuda lj/gromacs/gpu lj/gromacs/omp

39

lj/long/coul/long/opt 1j/sdk/gpu lj/sdk/omp lj/sdk/coul/long/gpu
lj/sdk/coul/long/omp lj/sdk/coul/msm/omp lj/sf/omp lj/smooth/cuda
lj/smooth/omp lj/smooth/linear/omp 1j96/cut/cuda 1j96/cut/gpu
1j96/cut/omp lubricate/omp lubricate/poly/omp meam/spline/omp
mie/cut/gpu morse/cuda morse/gpu morse/omp
morse/opt nb3b/harmonic/omp nm/cut/omp nm/cut/coul/cut/omp
nm/cut/coul/long/omp peri/lps/omp peri/pmb/omp rebo/omp
resquared/gpu resquared/omp soft/gpu soft/omp
sw/cuda sw/gpu sw/omp table/gpu
table/omp tersoff/cuda tersoff/omp tersoff/mod/omp
tersoff/table/omp tersoff/zbl/omp tip4p/cut/omp tip4p/long/omp
tri/lj/omp yukawa/gpu yukawa/omp yukawa/colloid/gpu
yukawa/colloid/omp zbl/omp

Bond_style potentials

See the bond_style command for an overview of bond potentials. Click on the style itself for a full description:

none hybrid class2 fene
fene/expand harmonic morse nonlinear
quartic table

These are bond styles contributed by users, which can be used if LAMMPS is built with the appropriate package.

harmonic/shift |harmonic/shift/cut

These are accelerated bond styles, which can be used if LAMMPS is built with the appropriate accelerated

package.

class2/omp fene/omp fene/expand/omp | harmonic/omp
harmonic/shift/omp |harmonic/shift/cut/omp| morse/omp nonlinear/omp
quartic/omp table/omp

Angle_style potentials

See the angle_style command for an overview of angle potentials. Click on the style itself for a full description:

none hybrid charmm class2
cosine cosine/delta | cosine/periodic | cosine/squared
harmonic table

These are angle styles contributed by users, which can be used if LAMMPS is built with the appropriate package.

sdk

cosine/shift

cosine/shift/exp

dipole

fourier

fourier/simple

quartic

These are accelerated angle styles, which can be used if LAMMPS is built with the appropriate accelerated

package.

charmm/omp

class2/omp

cosine/omp

cosine/delta/omp

40

cosine/periodic/omp | cosine/shift/omp [cosine/shift/exp/omp| cosine/squared/omp

dipole/ompfourier/omp |fourier/simple/omp| harmonic/omp |quartic/omptable/omp

Dihedral_style potentials

See the dihedral_style command for an overview of dihedral potentials. Click on the style itself for a full
description:

none hybrid charmm class2

harmonic helix multi/harmonic opls

These are dihedral styles contributed by users, which can be used if LAMMPS is built with the appropriate
package.

cosine/shift/exp [fourier [nharmonic |quadratic |
table

These are accelerated dihedral styles, which can be used if LAMMPS is built with the appropriate accelerated
package.

charmm/omp class2/omp |cosine/shift/exp/omp| fourier/omp

harmonic/omp helix/omp |multi/harmonic/omp |nharmonic/omp

opls/ompquadratic/omp| table/omp

Improper_style potentials

See the improper_style command for an overview of improper potentials. Click on the style itself for a full
description:

none hybrid class2 cvff

harmonic umbrella

These are improper styles contributed by users, which can be used if LAMMPS is built with the appropriate
package.

|cossq |f0urier|ring |

These are accelerated improper styles, which can be used if LAMMPS is built with the appropriate accelerated
package.

class2/omp cossg/omp cvff/omp fourier/omp

harmonic/omp ring/omp umbrella/omp

Kspace solvers

See the kspace_style command for an overview of Kspace solvers. Click on the style itself for a full description:

ewald ewald/disp msm msm/cg
pppm pppm/cg pppm/disp |pppm/disp/tip4p
pppm/tip4p

These are accelerated Kspace solvers, which can be used if LAMMPS is built with the appropriate accelerated
package.

41

ewald/omp

msm/omp

msm/cg/omp

pppm/cuda

pppm/gpu

pppm/omp

pppm/cg/omp

pppm/tip4dp/omp

42

Previous Section - LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands - Next Section

4. Packages

This section gives a quick overview of the add-on packages that extend LAMMPS functionality.

4.1 Standard packages
4.2 User packages

LAMMPS includes many optional packages, which are groups of files that enable a specific set of features. For
example, force fields for molecular systems or granular systems are in packages. You can see the list of all
packages by typing "make package" from within the src directory of the LAMMPS distribution.

See Section_start 3 of the manual for details on how to include/exclude specific packages as part of the LAMMPS
build process, and for more details about the differences between standard packages and user packages in

LAMMPS.

Below, the packages currently availabe in LAMMPS are listed. For standard packages, just a one-line description
is given. For user packages, more details are provided.

4.1 Standard packages

The current list of standard packages is as follows:

Package Description Author(s) Doc page Example | Library
ASPHERE aspherical particles - Section_howto ellipse -
CLASS2 class 2 force fields - pair_style lj/class2 - -
COLLOID colloidal particles - atom_style colloid | colloid -
DIPOLE point dipole particles - pair_style dipole/cut| dipole -
FLD Fast Lubri(.:ation Kumar & Bybee & Higdon pair._style i i

Dynamics (1) lubricateU

GPU GPU-enabled potentials Mike Brown (ORNL) Section accelerate gpu lib/gpu

GRANULAR granular systems - Section_howto pour -
KIM openKIM potentials Smlrlc{}:&iﬁ;ﬁ ,f’)lh()t & pair_style kim kim KIM
KSPACE long-range Coulombic - kspace_style peptide -
solvers
MANYBODY| many-body potentials - pair_style tersoff shear -
MEAM modified EAM potential| Greg Wagner (Sandia) pair_style meam meam | lib/meam
MC Monte Carlo options - fix gecmce - -
MOLECULE molecular. system force - Section_howto peptide -
fields
OPT optimized pair potentials Fischer & R(lgl ie & Natoli Section accelerate - -
PERI Peridynamics models Mike Parks (Sandia) pair_style peri peri -
POEMS couple;;iortligol : body Rudra Mukherjee (JPL) fix poems rigid |[lib/poems

43

http://lammps.sandia.gov

REAX ReaxFF potential Aidan Thompson (Sandia) pair_style reax reax lib/reax
REPLICA | multi-replica methods - Section_howto tad -
RIGID rigid bodies - fix rigid rigid -
SHOCK shock loading methods - fix msst - -
SRD stochastic rptatlon i fix srd ord i

dynamics
VORONOI Voronoi tesselations Daniel Schwen (LANL) compute - Voro++
voronoi/atom

XTC dumps in XTC format - dump - -

The "Authors" column lists a name(s) if a specific person is responible for creating and maintaining the package.
(1) The FLD package was created by Amit Kumar and Michael Bybee from Jonathan Higdon's group at UTUC.

(2) The OPT package was created by James Fischer (High Performance Technologies), David Richie, and Vincent
Natoli (Stone Ridge Technolgy).

(3) The KIM package was created by Valeriu Smirichinski, Ryan Elliott, and Ellad Tadmor (U Minn).

The "Doc page" column links to either a portion of the Section_howto of the manual, or an input script command
implemented as part of the package.

The "Example" column is a sub-directory in the examples directory of the distribution which has an input script
that uses the package. E.g. "peptide" refers to the examples/peptide directory.

The "Library" column lists an external library which must be built first and which LAMMPS links to when it is
built. If it is listed as lib/package, then the code for the library is under the lib directory of the LAMMPS
distribution. See the lib/package/README file for info on how to build the library. If it is not listed as
lib/package, then it is a third-party library not included in the LAMMPS distribution. See the
src/package/README or src/package/Makefile.lammps file for info on where to download the library. Section
start of the manual also gives details on how to build LAMMPS with both kinds of auxiliary libraries.

4.2 User packages

The current list of user-contributed packages is as follows:

Package Description Author(s) Doc page Example Pic/movie Library
USER-ATC atom—to—co.ntmuum Jone.s & Templeton & fix atc USER/atc atc lib/atc
coupling Zimmerman (2)
USER-AWPMD | wave-packet MD Ilya Valuev (JIHT) pair_style awpmd/cut | USER/awpmd - lib/awpmc
e coarse-graining Axel Kohlmeyer . . i i
USER-CG-CMM model (Temple U) pair_style lj/sdk USER/cg-cmm cg
. . Fiorin & Henin & . .
USER-COLVARS| collective variables fix colvars USER/colvars | colvars lib/colvars
Kohlmeyer (3)
USER-CUDA | NVIDIAGPU | Christian Trott (UTech | g, i1 yeceleraste | USER/cuda i lib/cuda
styles Ilmenau)
USER-EFF | electron force field | 4" gézilcllll‘)"lg"tem pair_style eff/cut USER/eff eff ;

44

http://lammps.sandia.gov/pictures.html#atc
http://lammps.sandia.gov/pictures.html#cg
http://lammps.sandia.gov/movies.html#eff

Lattice Boltzmann

Colin Denniston (U

USER-LB fluid Western Ontario) fix Ib/fluid USER/Ib - -
single-file
USER-MISC o USER-MISC/README | USER-MISC/README - - -
contributions
USER-MOLFILE | ¥MP molfile Axel Kohlmeyer dump molfile - - |VMD-MOLF
plug-ins (Temple U)
USER-OMP OpenMP threaded Axel Kohlmeyer Section accelerate i i i
styles (Temple U)
C version of .)
USER-REAXC ReaxFF Metin Aktulga (LBNL) pair_style reaxc reax - -
smoothed particle | Georg Ganzenmuller .
USER-SPH hydrodynamics (EMI) userguide.pdf USER/sph sph -

The "Authors" column lists a name(s) if a specific person is responible for creating and maintaining the package.

If the Library is not listed as lib/package, then it is a third-party library not included in the LAMMPS distribution.
See the src/package/Makefile.lammps file for info on where to download the library from.

(2) The ATC package was created by Reese Jones, Jeremy Templeton, and Jon Zimmerman (Sandia).

(3) The COLVARS package was created by Axel Kohlmeyer (Temple U) using the colvars module library written
by Giacomo Fiorin (Temple U) and Jerome Henin (LISM, Marseille, France).

The "Doc page" column links to either a portion of the Section_howto of the manual, or an input script command

implemented as part of the package, or to additional documentation provided witht he package.

The "Example" column is a sub-directory in the examples directory of the distribution which has an input script
that uses the package. E.g. "peptide" refers to the examples/peptide directory. USER/cuda refers to the
examples/USER/cuda directory.

The "Library" column lists an external library which must be built first and which LAMMPS links to when it is

built. If it is listed as lib/package, then the code for the library is under the lib directory of the LAMMPS

distribution. See the lib/package/README file for info on how to build the library. If it is not listed as
lib/package, then it is a third-party library not included in the LAMMPS distribution. See the

src/package/Makefile.lammps file for info on where to download the library. Section start of the manual also

gives details on how to build LAMMPS with both kinds of auxiliary libraries.

More details on each package, from the USER-*/README file is given below.

USER-MISC package

The files in this package are a potpourri of (mostly) unrelated features contributed to LAMMPS by users. Each
feature is a single pair of files (*.cpp and *.h).

More information about each feature can be found by reading its doc page in the LAMMPS doc directory. The
doc page which lists all LAMMPS input script commands is as follows:

Section_commands

User-contributed features are listed at the bottom of the fix, compute, pair, etc sections.

The list of features and author of each is given in the src/USER-MISC/README file.

45

http://www.ks.uiuc.edu/Research/vmd
http://lammps.sandia.gov/movies.html#sph

You should contact the author directly if you have specific questions about the feature or its coding.

USER-ATC package

This package implements a "fix atc" command which can be used in a LAMMPS input script. This fix can be
employed to either do concurrent coupling of MD with FE-based physics surrogates or on-the-fly post-processing
of atomic information to continuum fields.

See the doc page for the fix atc command to get started. At the bottom of the doc page are many links to
additional documentation contained in the doc/USER/atc directory.

There are example scripts for using this package in examples/USER/atc.

This package uses an external library in lib/atc which must be compiled before making LAMMPS. See the
lib/atc/README file and the LAMMPS manual for information on building LAMMPS with external libraries.

The primary people who created this package are Reese Jones (rjones at sandia.gov), Jeremy Templeton (jatempl
at sandia.gov) and Jon Zimmerman (jzimmer at sandia.gov) at Sandia. Contact them directly if you have
questions.

USER-AWPMD package

This package contains a LAMMPS implementation of the Antisymmetrized Wave Packet Molecular Dynamics
(AWPMD) method.

See the doc page for the pair_style awpmd/cut command to get started.

There are example scripts for using this package in examples/USER/awpmd.

This package uses an external library in lib/awpmd which must be compiled before making LAMMPS. See the
lib/awpmd/README file and the LAMMPS manual for information on building LAMMPS with external

libraries.

The person who created this package is Ilya Valuev at the JIHT in Russia (valuev at physik.hu-berlin.de). Contact
him directly if you have questions.

USER-COLVARS package
This package implements the "fix colvars" command which can be used in a LAMMPS input script.

This fix allows to use "collective variables" to implement Adaptive Biasing Force, Metadynamics, Steered MD,
Umbrella Sampling and Restraints. This code consists of two parts:

¢ A portable collective variable module library written and maintained by Giacomo Fiorin (ICMS, Temple
University, Philadelphia, PA, USA) and Jerome Henin (LISM, CNRS, Marseille, France). This code is
located in the directory lib/colvars and needs to be compiled first.

® The colvars fix and an interface layer, exchanges information between LAMMPS and the collective
variable module.

See the doc page of fix colvars for more details.

There are example scripts for using this package in examples/USER/colvars

46

This is a very new interface that does not yet support all features in the module and will see future optimizations
and improvements. The colvars module library is also available in NAMD has been thoroughly used and tested
there. Bugs and problems are likely due to the interface layers code. Thus the current version of this package
should be considered beta quality.

The person who created this package is Axel Kohlmeyer at Temple U (akohlmey at gmail.com). Contact him
directly if you have questions.

USER-CG-CMM package
This package implements 3 commands which can be used in a LAMMPS input script:

e pair_style 1j/sdk
e pair_style lj/sdk/coul/long
¢ angle_style sdk

These styles allow coarse grained MD simulations with the parametrization of Shinoda, DeVane, Klein, Mol Sim,
33,27 (2007) (SDK), with extensions to simulate ionic liquids, electrolytes, lipids and charged amino acids.

See the doc pages for these commands for details.
There are example scripts for using this package in examples/USER/cg-cmm.

This is the second generation implementation reducing the the clutter of the previous version. For many systems
with electrostatics, it will be faster to use pair_style hybrid/overlay with 1lj/sdk and coul/long instead of the
combined lj/sdk/coul/long style. since the number of charged atom types is usually small. For any other coulomb
interactions this is now required. To exploit this property, the use of the kspace_style pppm/cg is recommended
over regular pppm. For all new styles, input file backward compatibility is provided. The old implementation is
still available through appending the /old suffix. These will be discontinued and removed after the new
implementation has been fully validated.

The current version of this package should be considered beta quality. The CG potentials work correctly for
"normal" situations, but have not been testing with all kinds of potential parameters and simulation systems.

The person who created this package is Axel Kohlmeyer at Temple U (akohlmey at gmail.com). Contact him
directly if you have questions.

USER-CUDA package

This package provides acceleration of various LAMMPS pair styles, fix styles, compute styles, and long-range
Coulombics via PPPM for NVIDIA GPUs.

See this section of the manual to get started:
Section_accelerate
There are example scripts for using this package in examples/USER/cuda.

This package uses an external library in lib/cuda which must be compiled before making LAMMPS. See the
lib/cuda/README file and the LAMMPS manual for information on building LAMMPS with external libraries.

47

The person who created this package is Christian Trott at the University of Technology Ilmenau, Germany
(christian.trott at tu-ilmenau.de). Contact him directly if you have questions.

USER-EFF package

This package contains a LAMMPS implementation of the electron Force Field (eFF) currently under development
at Caltech, as described in A. Jaramillo-Botero, J. Su, Q. An, and W.A. Goddard III, JCC, 2010. The eFF potential
was first introduced by Su and Goddard, in 2007.

eFF can be viewed as an approximation to QM wave packet dynamics and Fermionic molecular dynamics,
combining the ability of electronic structure methods to describe atomic structure, bonding, and chemistry in
materials, and of plasma methods to describe nonequilibrium dynamics of large systems with a large number of
highly excited electrons. We classify it as a mixed QM-classical approach rather than a conventional force field
method, which introduces QM-based terms (a spin-dependent repulsion term to account for the Pauli exclusion
principle and the electron wavefunction kinetic energy associated with the Heisenberg principle) that reduce,
along with classical electrostatic terms between nuclei and electrons, to the sum of a set of effective pairwise
potentials. This makes eFF uniquely suited to simulate materials over a wide range of temperatures and pressures
where electronically excited and ionized states of matter can occur and coexist.

The necessary customizations to the LAMMPS core are in place to enable the correct handling of explicit electron
properties during minimization and dynamics.

See the doc page for the pair_style eff/cut command to get started.
There are example scripts for using this package in examples/USER/eff.
There are auxiliary tools for using this package in tools/eff.

The person who created this package is Andres Jaramillo-Botero at CalTech (ajaramil at wag.caltech.edu).
Contact him directly if you have questions.

USER-OMP package

This package provides OpenMP multi-threading support and other optimizations of various LAMMPS pair styles,
dihedral styles, and fix styles.

See this section of the manual to get started:
Section_accelerate

The person who created this package is Axel Kohlmeyer at Temple U (akohlmey at gmail.com). Contact him
directly if you have questions.

USER-REAXC package

This package contains a implementation for LAMMPS of the ReaxFF force field. ReaxFF uses
distance-dependent bond-order functions to represent the contributions of chemical bonding to the potential
energy. It was originally developed by Adri van Duin and the Goddard group at CalTech.

The USER-REAXC version of ReaxFF (pair_style reax/c), implemented in C, should give identical or very

similar results to pair_style reax, which is a ReaxFF implementation on top of a Fortran library, a version of
which library was originally authored by Adri van Duin.

48

The reax/c version should be somewhat faster and more scalable, particularly with respect to the charge
equilibration calculation. It should also be easier to build and use since there are no complicating issues with
Fortran memory allocation or linking to a Fortran library.

For technical details about this implemention of ReaxFF, see this paper:

Parallel and Scalable Reactive Molecular Dynamics: Numerical Methods and Algorithmic Techniques, H. M.
Aktulga, J. C. Fogarty, S. A. Pandit, A. Y. Grama, Parallel Computing, in press (2011).

See the doc page for the pair_style reax/c command for details of how to use it in LAMMPS.

The person who created this package is Hasan Metin Aktulga (hmaktulga at 1bl.gov), while at Purdue University.
Contact him directly, or Aidan Thompson at Sandia (athomps at sandia.gov), if you have questions.

USER-SPH package

This package implements smoothed particle hydrodynamics (SPH) in LAMMPS. Currently, the package has the
following features:

* Tait, ideal gas, Lennard-Jones equation of states, full support for complete (i.e. internal-energy dependent)
equations of state * plain or Monaghans XSPH integration of the equations of motion * density continuity or
density summation to propagate the density field * commands to set internal energy and density of particles from
the input script * output commands to access internal energy and density for dumping and thermo output

See the file doc/USER/sph/SPH_LAMMPS_userguide.pdf to get started.

There are example scripts for using this package in examples/USER/sph.

The person who created this package is Georg Ganzenmuller at the Fraunhofer-Institute for High-Speed

Dynamics, Ernst Mach Institute in Germany (georg.ganzenmueller at emi.fhg.de). Contact him directly if you
have questions.

49

Previous Section - LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands - Next Section

5. Accelerating LAMMPS performance

This section describes various methods for improving LAMMPS performance for different classes of problems
running on different kinds of machines.

5.1 Measuring performance

5.2 General strategies

5.3 Packages with optimized styles

5.4 OPT package

5.5 USER-OMP package

5.6 GPU package

5.7 USER-CUDA package

5.8 Comparison of GPU and USER-CUDA packages

5.1 Measuring performance

Before trying to make your simulation run faster, you should understand how it currently performs and where the
bottlenecks are.

The best way to do this is run the your system (actual number of atoms) for a modest number of timesteps (say
100, or a few 100 at most) on several different processor counts, including a single processor if possible. Do this
for an equilibrium version of your system, so that the 100-step timings are representative of a much longer run.
There is typically no need to run for 1000s or timesteps to get accurate timings; you can simply extrapolate from
short runs.

For the set of runs, look at the timing data printed to the screen and log file at the end of each LAMMPS run. This
section of the manual has an overview.

Running on one (or a few processors) should give a good estimate of the serial performance and what portions of
the timestep are taking the most time. Running the same problem on a few different processor counts should give
an estimate of parallel scalability. I.e. if the simulation runs 16x faster on 16 processors, its 100% parallel
efficient; if it runs 8x faster on 16 processors, it's 50% efficient.

The most important data to look at in the timing info is the timing breakdown and relative percentages. For
example, trying different options for speeding up the long-range solvers will have little impact if they only
consume 10% of the run time. If the pairwise time is dominating, you may want to look at GPU or OMP versions
of the pair style, as discussed below. Comparing how the percentages change as you increase the processor count
gives you a sense of how different operations within the timestep are scaling. Note that if you are running with a
Kspace solver, there is additional output on the breakdown of the Kspace time. For PPPM, this includes the
fraction spent on FFTs, which can be communication intensive.

Another important detail in the timing info are the histograms of atoms counts and neighbor counts. If these vary
widely across processors, you have a load-imbalance issue. This often results in inaccurate relative timing data,
because processors have to wait when communication occurs for other processors to catch up. Thus the reported
times for "Communication" or "Other" may be higher than they really are, due to load-imbalance. If this is an
issue, you can uncomment the MPI_Barrier() lines in src/timer.cpp, and recompile LAMMPS, to obtain
synchronized timings.

50

http://lammps.sandia.gov

5.2 General strategies
NOTE: this sub-section is still a work in progress

Here is a list of general ideas for improving simulation performance. Most of them are only applicable to certain
models and certain bottlenecks in the current performance, so let the timing data you generate be your guide. It is
hard, if not impossible, to predict how much difference these options will make, since it is a function of problem
size, number of processors used, and your machine. There is no substitute for identifying performance
bottlenecks, and trying out various options.

¢ TRESPA

¢ 2-FFT PPPM

¢ Staggered PPPM

¢ single vs double PPPM

¢ partial charge PPPM

e verlet/split

® processor mapping via processors numa command
¢ Joad-balancing: balance and fix balance

¢ processor command for layout

¢ OMP when lots of cores

2-FFT PPPM, also called analytic differentiation or ad PPPM, uses 2 FFTs instead of the 4 FFTs used by the
default ik differentiation PPPM. However, 2-FFT PPPM also requires a slightly larger mesh size to achieve the
same accuracy as 4-FFT PPPM. For problems where the FFT cost is the performance bottleneck (typically large
problems running on many processors), 2-FFT PPPM may be faster than 4-FFT PPPM.

Staggered PPPM performs calculations using two different meshes, one shifted slightly with respect to the other.
This can reduce force aliasing errors and increase the accuracy of the method, but also doubles the amount of
work required. For high relative accuracy, using staggered PPPM allows one to half the mesh size in each
dimension as compared to regular PPPM, which can give around a 4x speedup in the kspace time. However, for
low relative accuracy, using staggered PPPM gives little benefit and can be up to 2x slower in the kspace time.
For example, the rhodopsin benchmark was run on a single processor, and results for kspace time vs. relative
accuracy for the different methods are shown in the figure below. For this system, staggered PPPM (using ik
differentiation) becomes useful when using a relative accuracy of slightly greater than 1e-5 and above.

51

Rhodopsin Benchmark

7

/ =—4=PPPM, ik

/ == PPPM, ad
/ =f=PPPM, staggered ik
/./ PPPM, staggered ad

g
Ha

H
i

=]

.8

>

kspace time (s)

n

]
3
(¥}

. G
in

1E-03 1E-04 1.E-05 1.E-06 1.E-O7
relative accuracy

IMPORTANT NOTE: Using staggered PPPM may not give the same increase in accuracy of energy and pressure
as it does in forces, so some caution must be used if energy and/or pressure are quantities of interest, such as when
using a barostat.

5.3 Packages with optimized styles

Accelerated versions of various pair_style, fixes, computes, and other commands have been added to LAMMPS,
which will typically run faster than the standard non-accelerated versions, if you have the appropriate hardware on
your system.

The accelerated styles have the same name as the standard styles, except that a suffix is appended. Otherwise, the
syntax for the command is identical, their functionality is the same, and the numerical results it produces should
also be identical, except for precision and round-off issues.

For example, all of these variants of the basic Lennard-Jones pair style exist in LAMMPS:

® pair_style lj/cut

® pair_style lj/cut/opt
® pair_style lj/cut/omp
® pair_style lj/cut/gpu
® pair_style lj/cut/cuda

Assuming you have built LAMMPS with the appropriate package, these styles can be invoked by specifying them
explicitly in your input script. Or you can use the -suffix command-line switch to invoke the accelerated versions
automatically, without changing your input script. The suffix command allows you to set a suffix explicitly and to
turn off/on the comand-line switch setting, both from within your input script.

Styles with an "opt" suffix are part of the OPT package and typically speed-up the pairwise calculations of your
simulation by 5-25%.

52

Styles with an "omp" suffix are part of the USER-OMP package and allow a pair-style to be run in multi-threaded
mode using OpenMP. This can be useful on nodes with high-core counts when using less MPI processes than
cores is advantageous, e.g. when running with PPPM so that FFTs are run on fewer MPI processors or when the
many MPI tasks would overload the available bandwidth for communication.

Styles with a "gpu" or "cuda" suffix are part of the GPU or USER-CUDA packages, and can be run on NVIDIA
GPUs associated with your CPUs. The speed-up due to GPU usage depends on a variety of factors, as discussed
below.

To see what styles are currently available in each of the accelerated packages, see Section_commands 5 of the
manual. A list of accelerated styles is included in the pair, fix, compute, and kspace sections.

The following sections explain:

¢ what hardware and software the accelerated styles require

¢ how to build LAMMPS with the accelerated packages in place
¢ what changes (if any) are needed in your input scripts

¢ guidelines for best performance

e speed-ups you can expect

The final section compares and contrasts the GPU and USER-CUDA packages, since they are both designed to
use NVIDIA GPU hardware.

5.4 OPT package

The OPT package was developed by James Fischer (High Performance Technologies), David Richie, and Vincent
Natoli (Stone Ridge Technologies). It contains a handful of pair styles whose compute() methods were rewritten
in C++ templated form to reduce the overhead due to if tests and other conditional code.

The procedure for building LAMMPS with the OPT package is simple. It is the same as for any other package
which has no additional library dependencies:

make yes—-opt
make machine

If your input script uses one of the OPT pair styles, you can run it as follows:

Imp_machine -sf opt <in.script
mpirun -np 4 lmp_machine -sf opt <in.script

You should see a reduction in the "Pair time" printed out at the end of the run. On most machines and problems,
this will typically be a 5 to 20% savings.

5.5 USER-OMP package

The USER-OMP package was developed by Axel Kohlmeyer at Temple University. It provides multi-threaded
versions of most pair styles, all dihedral styles and a few fixes in LAMMPS. The package currently uses the
OpenMP interface which requires using a specific compiler flag in the makefile to enable multiple threads;

without this flag the corresponding pair styles will still be compiled and work, but do not support multi-threading.

Building LAMMPS with the USER-OMP package:

53

The procedure for building LAMMPS with the USER-OMP package is simple. You have to edit your machine
specific makefile to add the flag to enable OpenMP support to the CCFLAGS and LINKFLAGS variables. For
the GNU compilers for example this flag is called -fopenmp. Check your compiler documentation to find out
which flag you need to add. The rest of the compilation is the same as for any other package which has no
additional library dependencies:

make yes—-user—-omp
make machine

Please note that this will only install accelerated versions of styles that are already installed, so you want to install
this package as the last package, or else you may be missing some accelerated styles. If you plan to uninstall some
package, you should first uninstall the USER-OMP package then the other package and then re-install
USER-OMP, to make sure that there are no orphaned omp style files present, which would lead to compilation
erTors.

If your input script uses one of regular styles that are also exist as an OpenMP version in the USER-OMP package
you can run it as follows:

env OMP_NUM_THREADS=4 lmp_serial -sf omp -in in.script
env OMP_NUM_THREADS=2 mpirun -np 2 lmp_machine -sf omp -in in.script
mpirun -x OMP_NUM_THREADS=2 -np 2 lmp_machine -sf omp -in in.script

The value of the environment variable OMP_NUM_THREADS determines how many threads per MPI task are
launched. All three examples above use a total of 4 CPU cores. For different MPI implementations the method to
pass the OMP_NUM_THREADS environment variable to all processes is different. Two different variants, one
for MPICH and OpenMP], respectively are shown above. Please check the documentation of your MPI
installation for additional details. Alternatively, the value provided by OMP_NUM_THREADS can be overridded
with the package omp command. Depending on which styles are accelerated in your input, you should see a
reduction in the "Pair time" and/or "Bond time" and "Loop time" printed out at the end of the run. The optimal
ratio of MPI to OpenMP can vary a lot and should always be confirmed through some benchmark runs for the
current system and on the current machine.

Restrictions:

None of the pair styles in the USER-OMP package support the "inner”, "middle", "outer" options for r-RESPA
integration, only the "pair" option is supported.

Parallel efficiency and performance tips:

In most simple cases the MPI parallelization in LAMMPS is more efficient than multi-threading implemented in
the USER-OMP package. Also the parallel efficiency varies between individual styles. On the other hand, in
many cases you still want to use the omp version - even when compiling or running without OpenMP support -
since they all contain optimizations similar to those in the OPT package, which can result in serial speedup.

Using multi-threading is most effective under the following circumstances:

¢ Individual compute nodes have a significant number of CPU cores but the CPU itself has limited memory
bandwidth, e.g. Intel Xeon 53xx (Clovertown) and 54xx (Harpertown) quad core processors. Running one
MPI task per CPU core will result in significant performance degradation, so that running with 4 or even
only 2 MPI tasks per nodes is faster. Running in hybrid MPI+OpenMP mode will reduce the inter-node
communication bandwidth contention in the same way, but offers and additional speedup from utilizing
the otherwise idle CPU cores.

54

¢ The interconnect used for MPI communication is not able to provide sufficient bandwidth for a large
number of MPI tasks per node. This applies for example to running over gigabit ethernet or on Cray XT4
or XTS5 series supercomputers. Same as in the aforementioned case this effect worsens with using an
increasing number of nodes.

¢ The input is a system that has an inhomogeneous particle density which cannot be mapped well to the
domain decomposition scheme that LAMMPS employs. While this can be to some degree alleviated
through using the processors keyword, multi-threading provides a parallelism that parallelizes over the
number of particles not their distribution in space.

¢ Finally, multi-threaded styles can improve performance when running LAMMPS in "capability mode",
i.e. near the point where the MPI parallelism scales out. This can happen in particular when using as
kspace style for long-range electrostatics. Here the scaling of the kspace style is the performance limiting
factor and using multi-threaded styles allows to operate the kspace style at the limit of scaling and then
increase performance parallelizing the real space calculations with hybrid MPI+OpenMP. Sometimes
additional speedup can be achived by increasing the real-space coulomb cutoff and thus reducing the
work in the kspace part.

The best parallel efficiency from omp styles is typically achieved when there is at least one MPI task per physical
processor, i.e. socket or die.

Using threads on hyper-threading enabled cores is usually counterproductive, as the cost in additional memory
bandwidth requirements is not offset by the gain in CPU utilization through hyper-threading.

A description of the multi-threading strategy and some performance examples are presented here

5.6 GPU package

The GPU package was developed by Mike Brown at ORNL. It provides GPU versions of several pair styles and
for long-range Coulombics via the PPPM command. It has the following features:

¢ The package is designed to exploit common GPU hardware configurations where one or more GPUs are
coupled with many cores of a multi-core CPUs, e.g. within a node of a parallel machine.

¢ Atom-based data (e.g. coordinates, forces) moves back-and-forth between the CPU(s) and GPU every
timestep.

¢ Neighbor lists can be constructed on the CPU or on the GPU

¢ The charge assignement and force interpolation portions of PPPM can be run on the GPU. The FFT
portion, which requires MPI communication between processors, runs on the CPU.

¢ Asynchronous force computations can be performed simultaneously on the CPU(s) and GPU.

e L AMMPS-specific code is in the GPU package. It makes calls to a generic GPU library in the lib/gpu
directory. This library provides NVIDIA support as well as more general OpenCL support, so that the
same functionality can eventually be supported on a variety of GPU hardware.

NOTE: discuss 3 precisions if change, also have to re-link with LAMMPS always use newton off expt with
differing numbers of CPUs vs GPU - can't tell what is fastest give command line switches in examples

I am not very clear to the meaning of "Max Mem / Proc" in the "GPU Time Info (average)". Is it the maximal of
GPU memory used by one CPU core?

It is the maximum memory used at one time on the GPU for data storage by a single MPI process. - Mike

Hardware and software requirements:

55

http://sites.google.com/site/akohlmey/software/lammps-icms/lammps-icms-tms2011-talk.pdf?attredirects=0&d=1

To use this package, you currently need to have specific NVIDIA hardware and install specific NVIDIA CUDA
software on your system:

® Check if you have an NVIDIA card: cat /proc/driver/nvidia/cards/0

¢ Go to http://www.nvidia.com/object/cuda_get.html

¢ Install a driver and toolkit appropriate for your system (SDK is not necessary)

¢ Follow the instructions in lammps/lib/gpu/README to build the library (see below)
¢ Run lammps/lib/gpu/nvc_get_devices to list supported devices and properties

Building LAMMPS with the GPU package:

As with other packages that include a separately compiled library, you need to first build the GPU library, before
building LAMMPS itself. General instructions for doing this are in this section of the manual. For this package,
do the following, using a Makefile in lib/gpu appropriate for your system:

cd lammps/lib/gpu
make —-f Makefile.linux
(see further instructions in lammps/lib/gpu/README)

If you are successful, you will produce the file lib/libgpu.a.

Now you are ready to build LAMMPS with the GPU package installed:

cd lammps/src
make yes—-gpu
make machine

Note that the lo-level Makefile (e.g. scc/MAKE/Makefile.linux) has these settings: gpu_SYSINC, gpu_SYSLIB,
gpu_SYSPATH. These need to be set appropriately to include the paths and settings for the CUDA system
software on your machine. See src/MAKE/Makefile.g++ for an example.

GPU configuration

When using GPUs, you are restricted to one physical GPU per LAMMPS process, which is an MPI process
running on a single core or processor. Multiple MPI processes (CPU cores) can share a single GPU, and in many
cases it will be more efficient to run this way.

Input script requirements:
Additional input script requirements to run pair or PPPM styles with a gpu suffix are as follows:

¢ To invoke specific styles from the GPU package, you can either append "gpu" to the style name (e.g.
pair_style lj/cut/gpu), or use the -suffix command-line switch, or use the suffix command.

¢ The newton pair setting must be off.

¢ The package gpu command must be used near the beginning of your script to control the GPU selection
and initialization settings. It also has an option to enable asynchronous splitting of force computations
between the CPUs and GPUs.

As an example, if you have two GPUs per node and 8 CPU cores per node, and would like to run on 4 nodes (32
cores) with dynamic balancing of force calculation across CPU and GPU cores, you could specify

package gpu force/neigh 0 1 -1

56

In this case, all CPU cores and GPU devices on the nodes would be utilized. Each GPU device would be shared
by 4 CPU cores. The CPU cores would perform force calculations for some fraction of the particles at the same
time the GPUs performed force calculation for the other particles.

Timing output:

As described by the package gpu command, GPU accelerated pair styles can perform computations
asynchronously with CPU computations. The "Pair" time reported by LAMMPS will be the maximum of the time
required to complete the CPU pair style computations and the time required to complete the GPU pair style
computations. Any time spent for GPU-enabled pair styles for computations that run simultaneously with bond,
angle, dihedral, improper, and long-range calculations will not be included in the "Pair" time.

When the mode setting for the package gpu command is force/neigh, the time for neighbor list calculations on the
GPU will be added into the "Pair" time, not the "Neigh" time. An additional breakdown of the times required for
various tasks on the GPU (data copy, neighbor calculations, force computations, etc) are output only with the
LAMMPS screen output (not in the log file) at the end of each run. These timings represent total time spent on the
GPU for each routine, regardless of asynchronous CPU calculations.

Performance tips:

Generally speaking, for best performance, you should use multiple CPUs per GPU, as provided my most
multi-core CPU/GPU configurations.

Because of the large number of cores within each GPU device, it may be more efficient to run on fewer processes
per GPU when the number of particles per MPI process is small (100's of particles); this can be necessary to keep
the GPU cores busy.

See the lammps/lib/gpu/README file for instructions on how to build the GPU library for single, mixed, or
double precision. The latter requires that your GPU card support double precision.

5.7 USER-CUDA package

The USER-CUDA package was developed by Christian Trott at U Technology Ilmenau in Germany. It provides
NVIDIA GPU versions of many pair styles, many fixes, a few computes, and for long-range Coulombics via the
PPPM command. It has the following features:

¢ The package is designed to allow an entire LAMMPS calculation, for many timesteps, to run entirely on
the GPU (except for inter-processor MPI communication), so that atom-based data (e.g. coordinates,
forces) do not have to move back-and-forth between the CPU and GPU.

¢ The speed-up advantage of this approach is typically better when the number of atoms per GPU is large

¢ Data will stay on the GPU until a timestep where a non-GPU-ized fix or compute is invoked. Whenever a
non-GPU operation occurs (fix, compute, output), data automatically moves back to the CPU as needed.
This may incur a performance penalty, but should otherwise work transparently.

® Neighbor lists for GPU-ized pair styles are constructed on the GPU.

¢ The package only supports use of a single CPU (core) with each GPU.

Hardware and software requirements:

To use this package, you need to have specific NVIDIA hardware and install specific NVIDIA CUDA software
on your system.

57

Your NVIDIA GPU needs to support Compute Capability 1.3. This list may help you to find out the Compute
Capability of your card:

http://en.wikipedia.org/wiki/Comparison_of_Nvidia_graphics_processing_units

Install the Nvidia Cuda Toolkit in version 3.2 or higher and the corresponding GPU drivers. The Nvidia Cuda
SDK is not required for LAMMPSCUDA but we recommend it be installed. You can then make sure that its
sample projects can be compiled without problems.

Building LAMMPS with the USER-CUDA package:

As with other packages that include a separately compiled library, you need to first build the USER-CUDA
library, before building LAMMPS itself. General instructions for doing this are in this section of the manual. For
this package, do the following, using settings in the lib/cuda Makefiles appropriate for your system:

¢ Go to the lammps/lib/cuda directory

e If your CUDA toolkit is not installed in the default system directoy /usr/local/cuda edit the file
lib/cuda/Makefile.common accordingly.

¢ Type "make OPTIONS", where OPTIONS are one or more of the following options. The settings will be
written to the lib/cuda/Makefile.defaults and used in the next step.

precision=N to set the precision level

N = 1 for single precision (default)

N = 2 for double precision

N = 3 for positions in double precision

N = 4 for positions and velocities in double precision

arch=M to set GPU compute capability
M = 20 for CC2.0 (GF100/110, e.g. C2050,GTX580,GTX470) (default)
M = 21 for CC2.1 (GF104/114, e.g. GTX560, GTX460, GTX450)
M = 13 for CCl.3 (GF200, e.g. C1060, GTX285)
prec_timer=0/1 to use hi-precision timers
0 = do not use them (default)
1 = use these timers
this is usually only useful for Mac machines
dbg=0/1 to activate debug mode
0 = no debug mode (default)
1 = yes debug mode
this is only useful for developers
cufft=1 to determine usage of CUDA FFT library
0 = no CUFFT support (default)
in the future other CUDA-enabled FFT libraries might be supported

¢ Type "make" to build the library. If you are successful, you will produce the file lib/libcuda.a.

Now you are ready to build LAMMPS with the USER-CUDA package installed:

cd lammps/src
make yes-user—-cuda
make machine

Note that the LAMMPS build references the lib/cuda/Makefile.common file to extract setting specific CUDA
settings. So it is important that you have first built the cuda library (in lib/cuda) using settings appropriate to your
system.

Input script requirements:

Additional input script requirements to run styles with a cuda suffix are as follows:

58

¢ To invoke specific styles from the USER-CUDA package, you can either append "cuda" to the style name
(e.g. pair_style lj/cut/cuda), or use the -suffix command-line switch, or use the suffix command. One
exception is that the kspace_style pppm/cuda command has to be requested explicitly.

¢ To use the USER-CUDA package with its default settings, no additional command is needed in your
input script. This is because when LAMMPS starts up, it detects if it has been built with the
USER-CUDA package. See the -cuda command-line switch for more details.

¢ To change settings for the USER-CUDA package at run-time, the package cuda command can be used
near the beginning of your input script. See the package command doc page for details.

Performance tips:

The USER-CUDA package offers more speed-up relative to CPU performance when the number of atoms per
GPU is large, e.g. on the order of tens or hundreds of 1000s.

As noted above, this package will continue to run a simulation entirely on the GPU(s) (except for inter-processor
MPI communication), for multiple timesteps, until a CPU calculation is required, either by a fix or compute that is
non-GPU-ized, or until output is performed (thermo or dump snapshot or restart file). The less often this occurs,
the faster your simulation will run.

5.8 Comparison of GPU and USER-CUDA packages

Both the GPU and USER-CUDA packages accelerate a LAMMPS calculation using NVIDIA hardware, but they
do it in different ways.

As a consequence, for a particular simulation on specific hardware, one package may be faster than the other. We
give guidelines below, but the best way to determine which package is faster for your input script is to try both of
them on your machine. See the benchmarking section below for examples where this has been done.

Guidelines for using each package optimally:

® The GPU package allows you to assign multiple CPUs (cores) to a single GPU (a common configuration
for "hybrid" nodes that contain multicore CPU(s) and GPU(s)) and works effectively in this mode. The
USER-CUDA package does not allow this; you can only use one CPU per GPU.

® The GPU package moves per-atom data (coordinates, forces) back-and-forth between the CPU and GPU
every timestep. The USER-CUDA package only does this on timesteps when a CPU calculation is
required (e.g. to invoke a fix or compute that is non-GPU-ized). Hence, if you can formulate your input
script to only use GPU-ized fixes and computes, and avoid doing I/O too often (thermo output, dump file
snapshots, restart files), then the data transfer cost of the USER-CUDA package can be very low, causing
it to run faster than the GPU package.

® The GPU package is often faster than the USER-CUDA package, if the number of atoms per GPU is
"small". The crossover point, in terms of atoms/GPU at which the USER-CUDA package becomes faster
depends strongly on the pair style. For example, for a simple Lennard Jones system the crossover (in
single precision) is often about S0K-100K atoms per GPU. When performing double precision
calculations the crossover point can be significantly smaller.

® Both packages compute bonded interactions (bonds, angles, etc) on the CPU. This means a model with
bonds will force the USER-CUDA package to transfer per-atom data back-and-forth between the CPU
and GPU every timestep. If the GPU package is running with several MPI processes assigned to one
GPU, the cost of computing the bonded interactions is spread across more CPUs and hence the GPU
package can run faster.

® When using the GPU package with multiple CPUs assigned to one GPU, its performance depends to
some extent on high bandwidth between the CPUs and the GPU. Hence its performance is affected if full

59

16 PCle lanes are not available for each GPU. In HPC environments this can be the case if S2050/70
servers are used, where two devices generally share one PCle 2.0 16x slot. Also many multi-GPU
mainboards do not provide full 16 lanes to each of the PCle 2.0 16x slots.

Differences between the two packages:

¢ The GPU package accelerates only pair force, neighbor list, and PPPM calculations. The USER-CUDA
package currently supports a wider range of pair styles and can also accelerate many fix styles and some
compute styles, as well as neighbor list and PPPM calculations.

e The USER-CUDA package does not support acceleration for minimization.

¢ The USER-CUDA package does not support hybrid pair styles.

¢ The USER-CUDA package can order atoms in the neighbor list differently from run to run resulting in a
different order for force accumulation.

® The USER-CUDA package has a limit on the number of atom types that can be used in a simulation.

¢ The GPU package requires neighbor lists to be built on the CPU when using exclusion lists or a triclinic
simulation box.

¢ The GPU package uses more GPU memory than the USER-CUDA package. This is generally not a
problem since typical runs are computation-limited rather than memory-limited.

Examples:

The LAMMPS distribution has two directories with sample input scripts for the GPU and USER-CUDA
packages.

¢ Jammps/examples/gpu = GPU package files
¢ lJammps/examples/USER/cuda = USER-CUDA package files

These contain input scripts for identical systems, so they can be used to benchmark the performance of both
packages on your system.

60

Previous Section - LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands - Next Section

6. How-to discussions
This section describes how to perform common tasks using LAMMPS.

6.1 Restarting a simulation

6.2 2d simulations

6.3 CHARMM, AMBER, and DREIDING force fields
6.4 Running multiple simulations from one input script
6.5 Multi-replica simulations

6.6 Granular models

6.7 TIP3P water model

6.8 TIP4P water model

6.9 SPC water model

6.10 Coupling LAMMPS to other codes

6.11 Visualizing LAMMPS snapshots

6.12 Triclinic (non-orthogonal) simulation boxes

6.13 NEMD simulations

6.14 Finite-size spherical and aspherical particles

6.15 Output from LAMMPS (thermo, dumps, computes, fixes, variables)
6.16 Thermostatting, barostatting and computing temperature
6.17 Walls

6.18 Elastic constants

6.19 Library interface to LAMMPS

6.20 Calculating thermal conductivity

6.21 Calculating viscosity

The example input scripts included in the LAMMPS distribution and highlighted in Section_example also show
how to setup and run various kinds of simulations.

6.1 Restarting a simulation

There are 3 ways to continue a long LAMMPS simulation. Multiple run commands can be used in the same input
script. Each run will continue from where the previous run left off. Or binary restart files can be saved to disk
using the restart command. At a later time, these binary files can be read via a read_restart command in a new
script. Or they can be converted to text data files using the -r command-line switch and read by a read_data
command in a new script.

Here we give examples of 2 scripts that read either a binary restart file or a converted data file and then issue a
new run command to continue where the previous run left off. They illustrate what settings must be made in the

new script. Details are discussed in the documentation for the read_restart and read_data commands.

Look at the in.chain input script provided in the bench directory of the LAMMPS distribution to see the original
script that these 2 scripts are based on. If that script had the line

restart 50 tmp.restart

added to it, it would produce 2 binary restart files (tmp.restart.50 and tmp.restart.100) as it ran.

61

http://lammps.sandia.gov

This script could be used to read the st restart file and re-run the last 50 timesteps:

read_restart tmp.restart.50

neighbor 0.4 bin

neigh_modify every 1 delay 1

fix 1 all nve

fix 2 all langevin 1.0 1.0 10.0 904297
timestep 0.012

run 50

Note that the following commands do not need to be repeated because their settings are included in the restart file:
units, atom_style, special_bonds, pair_style, bond_style. However these commands do need to be used, since their
settings are not in the restart file: neighbor, fix, timestep.

If you actually use this script to perform a restarted run, you will notice that the thermodynamic data match at step
50 (if you also put a "thermo 50" command in the original script), but do not match at step 100. This is because
the fix langevin command uses random numbers in a way that does not allow for perfect restarts.

As an alternate approach, the restart file could be converted to a data file as follows:

Ilmp_g++ -r tmp.restart.50 tmp.restart.data

Then, this script could be used to re-run the last 50 steps:

units 173
atom_style bond
pair_style 1j/cut 1.12
pair_modify shift yes
bond_style fene

special_bonds 0.0 1.0 1.0

read_data tmp.restart.data

neighbor 0.4 bin

neigh_modify every 1 delay 1

fix 1 all nve

fix 2 all langevin 1.0 1.0 10.0 904297
timestep 0.012

reset_timestep 50
run 50

Note that nearly all the settings specified in the original in.chain script must be repeated, except the pair_coeff
and bond_coeff commands since the new data file lists the force field coefficients. Also, the reset_timestep
command is used to tell LAMMPS the current timestep. This value is stored in restart files, but not in data files.

62

6.2 2d simulations
Use the dimension command to specify a 2d simulation.
Make the simulation box periodic in z via the boundary command. This is the default.

If using the create box command to define a simulation box, set the z dimensions narrow, but finite, so that the
create_atoms command will tile the 3d simulation box with a single z plane of atoms - e.g.

create box 1 -10 10 -10 10 -0.25 0.25

If using the read data command to read in a file of atom coordinates, set the "zlo zhi" values to be finite but
narrow, similar to the create_box command settings just described. For each atom in the file, assign a z coordinate
so it falls inside the z-boundaries of the box - e.g. 0.0.

Use the fix enforce2d command as the last defined fix to insure that the z-components of velocities and forces are
zeroed out every timestep. The reason to make it the last fix is so that any forces induced by other fixes will be
zeroed out.

Many of the example input scripts included in the LAMMPS distribution are for 2d models.
IMPORTANT NOTE: Some models in LAMMPS treat particles as finite-size spheres, as opposed to point

particles. In 2d, the particles will still be spheres, not disks, meaning their moment of inertia will be the same as in
3d.

6.3 CHARMM, AMBER, and DREIDING force fields

A force field has 2 parts: the formulas that define it and the coefficients used for a particular system. Here we only
discuss formulas implemented in LAMMPS that correspond to formulas commonly used in the CHARMM,
AMBER, and DREIDING force fields. Setting coefficients is done in the input data file via the read_data
command or in the input script with commands like pair_coeff or bond_coeff. See Section_tools for additional
tools that can use CHARMM or AMBER to assign force field coefficients and convert their output into LAMMPS
nput.

See (MacKerell) for a description of the CHARMM force field. See (Cornell) for a description of the AMBER
force field.

These style choices compute force field formulas that are consistent with common options in CHARMM or
AMBER. See each command's documentation for the formula it computes.

¢ bond_style harmonic

¢ angle_style charmm

¢ dihedral_style charmm

e pair_style lj/charmm/coul/charmm

¢ pair_style lj/charmm/coul/charmm/implicit
e pair_style lj/charmm/coul/long

¢ special_bonds charmm
¢ special_bonds amber

DREIDING is a generic force field developed by the Goddard group at Caltech and is useful for predicting

63

http://www.wag.caltech.edu

structures and dynamics of organic, biological and main-group inorganic molecules. The philosophy in
DREIDING is to use general force constants and geometry parameters based on simple hybridization
considerations, rather than individual force constants and geometric parameters that depend on the particular
combinations of atoms involved in the bond, angle, or torsion terms. DREIDING has an explicit hydrogen bond
term to describe interactions involving a hydrogen atom on very electronegative atoms (N, O, F).

See (Mayo) for a description of the DREIDING force field

These style choices compute force field formulas that are consistent with the DREIDING force field. See each
command's documentation for the formula it computes.

¢ bond_style harmonic
¢ bond_style morse

¢ angle_style harmonic
¢ angle_style cosine
¢ angle_style cosine/periodic

¢ dihedral_style charmm
¢ improper_style umbrella

® pair_style buck

® pair_style buck/coul/cut
¢ pair_style buck/coul/long
® pair_style lj/cut

® pair_style lj/cut/coul/cut
® pair_style lj/cut/coul/long

¢ pair_style hbond/dreiding/lj
¢ pair_style hbond/dreiding/morse

¢ special_bonds dreiding

6.4 Running multiple simulations from one input script

This can be done in several ways. See the documentation for individual commands for more details on how these
examples work.

If "multiple simulations" means continue a previous simulation for more timesteps, then you simply use the run
command multiple times. For example, this script

units 17
atom_style atomic
read_data data.lj
run 10000

run 10000

run 10000

run 10000

run 10000

would run 5 successive simulations of the same system for a total of 50,000 timesteps.

64

If you wish to run totally different simulations, one after the other, the clear command can be used in between
them to re-initialize LAMMPS. For example, this script

units 1j

atom_style atomic
read_data data.lj

run 10000

clear

units 1j

atom_style atomic
read_data data.lj.new
run 10000

would run 2 independent simulations, one after the other.

For large numbers of independent simulations, you can use variables and the next and jump commands to loop
over the same input script multiple times with different settings. For example, this script, named in.polymer

variable d index runl run2 run3 run4 run5 run6 run7 run8
shell cd $d

read_data data.polymer

run 10000

shell cd ..

clear

next d

jump in.polymer

would run 8 simulations in different directories, using a data.polymer file in each directory. The same concept
could be used to run the same system at 8 different temperatures, using a temperature variable and storing the
output in different log and dump files, for example

variable a loop 8

variable t index 0.8 0.85 0.9 0.95 1.0 1.05 1.1 1.15
log log.$Sa

read data.polymer

velocity all create $t 352839
fix 1 all nvt $t $t 100.0
dump 1 all atom 1000 dump.S$a
run 100000

next t

next a

jump in.polymer

All of the above examples work whether you are running on 1 or multiple processors, but assumed you are
running LAMMPS on a single partition of processors. LAMMPS can be run on multiple partitions via the
"-partition" command-line switch as described in this section of the manual.

In the last 2 examples, if LAMMPS were run on 3 partitions, the same scripts could be used if the "index" and
"loop" variables were replaced with universe-style variables, as described in the variable command. Also, the
"next t" and "next a" commands would need to be replaced with a single "next a t" command. With these
modifications, the 8 simulations of each script would run on the 3 partitions one after the other until all were
finished. Initially, 3 simulations would be started simultaneously, one on each partition. When one finished, that
partition would then start the 4th simulation, and so forth, until all 8 were completed.

65

6.5 Multi-replica simulations

Several commands in LAMMPS run mutli-replica simulations, meaning that multiple instances (replicas) of your
simulation are run simultaneously, with small amounts of data exchanged between replicas periodically.

These are the relevant commands:

¢ neb for nudged elastic band calculations
¢ prd for parallel replica dynamics

¢ tad for temperature accelerated dynamics
¢ temper for parallel tempering

NEB is a method for finding transition states and barrier energies. PRD and TAD are methods for performing
accelerated dynamics to find and perform infrequent events. Parallel tempering or replica exchange runs different
replicas at a series of temperature to facilitate rare-event sampling.

These command can only be used if LAMMPS was built with the "replica” package. See the Making LAMMPS
section for more info on packages.

In all these cases, you must run with one or more processors per replica. The processors assigned to each replica
are determined at run-time by using the -partition command-line switch to launch LAMMPS on multiple
partitions, which in this context are the same as replicas. E.g. these commands:

mpirun -np 16 lmp_linux -partition 8x2 -in in.temper
mpirun -np 8 lmp_linux -partition 8xl -in in.neb

would each run 8 replicas, on either 16 or 8 processors. Note the use of the -in command-line switch to specify the
input script which is required when running in multi-replica mode.

Also note that with MPI installed on a machine (e.g. your desktop), you can run on more (virtual) processors than
you have physical processors. Thus the above commands could be run on a single-processor (or few-processor)
desktop so that you can run a multi-replica simulation on more replicas than you have physical processors.

6.6 Granular models

Granular system are composed of spherical particles with a diameter, as opposed to point particles. This means
they have an angular velocity and torque can be imparted to them to cause them to rotate.

To run a simulation of a granular model, you will want to use the following commands:
e atom_style sphere
¢ fix nve/sphere
o fix gravity
This compute
e compute erotate/sphere

calculates rotational kinetic energy which can be output with thermodynamic info.

Use one of these 3 pair potentials, which compute forces and torques between interacting pairs of particles:

66

® pair_style gran/history
® pair_style gran/no_history
® pair_style gran/hertzian

These commands implement fix options specific to granular systems:
o fix freeze
¢ fix pour
e fix viscous

¢ fix wall/gran

The fix style freeze zeroes both the force and torque of frozen atoms, and should be used for granular system
instead of the fix style setforce.

For computational efficiency, you can eliminate needless pairwise computations between frozen atoms by using
this command:

¢ neigh_modify exclude

6.7 TIP3P water model

The TIP3P water model as implemented in CHARMM (MacKerell) specifies a 3-site rigid water molecule with
charges and Lennard-Jones parameters assigned to each of the 3 atoms. In LAMMPS the fix shake command can
be used to hold the two O-H bonds and the H-O-H angle rigid. A bond style of harmonic and an angle style of
harmonic or charmm should also be used.

These are the additional parameters (in real units) to set for O and H atoms and the water molecule to run a rigid
TIP3P-CHARMM model with a cutoff. The K values can be used if a flexible TIP3P model (without fix shake) is
desired. If the LJ epsilon and sigma for HH and OH are set to 0.0, it corresponds to the original 1983 TIP3P
model (Jorgensen).

O mass = 15.9994

H mass = 1.008

O charge =-0.834

H charge = 0.417

LJ epsilon of OO =0.1521
LJ sigma of OO = 3.1507
LJ epsilon of HH = 0.0460
LJ sigma of HH = 0.4000
LJ epsilon of OH = 0.0836
LJ sigma of OH = 1.7753
K of OH bond =450

r0 of OH bond = 0.9572

K of HOH angle = 55
theta of HOH angle = 104.52

These are the parameters to use for TIP3P with a long-range Coulombic solver (e.g. Ewald or PPPM in
LAMMPS), see (Price) for details:

O mass = 15.9994
H mass = 1.008

67

O charge =-0.830

H charge =0.415

LJ epsilon of OO =0.102

LJ sigma of OO = 3.188

LJ epsilon, sigma of OH, HH = 0.0
K of OH bond =450

r0 of OH bond = 0.9572

K of HOH angle = 55

theta of HOH angle = 104.52

Wikipedia also has a nice article on water models.

6.8 TIP4P water model

The four-point TIP4P rigid water model extends the traditional three-point TIP3P model by adding an additional
site, usually massless, where the charge associated with the oxygen atom is placed. This site M is located at a
fixed distance away from the oxygen along the bisector of the HOH bond angle. A bond style of harmonic and an
angle style of harmonic or charmm should also be used.

A TIP4P model is run with LAMMPS using either this command for a cutoff model:
pair_style lj/cut/tip4p/cut
or these two commands for a long-range model:

® pair_style lj/cut/tip4p/long
® kspace_style pppm/tip4p

For both models, the bond lengths and bond angles should be held fixed using the fix shake command.

These are the additional parameters (in real units) to set for O and H atoms and the water molecule to run a rigid
TIP4P model with a cutoff (Jorgensen). Note that the OM distance is specified in the pair_style command, not as
part of the pair coefficients.

O mass = 15.9994

H mass = 1.008

O charge =-1.040

H charge = 0.520

r0 of OH bond = 0.9572
theta of HOH angle = 104.52
OM distance = 0.15

LJ epsilon of O-O = 0.1550
LJ sigma of O-O =3.1536
LJ epsilon, sigma of OH, HH = 0.0
Coulombic cutoff = 8.5

For the TIP4/Ice model (J Chem Phys, 122, 234511 (2005); http://dx.doi.org/10.1063/1.1931662) these values can
be used:

O mass = 15.9994
H mass = 1.008

68

http://en.wikipedia.org/wiki/Water_model

O charge =-1.1794

H charge = 0.5897

r0 of OH bond = 0.9572

theta of HOH angle = 104.52

OM distance = 0.1577

LJ epsilon of O-O =0.21084

LJ sigma of O-O = 3.1668

LJ epsilon, sigma of OH, HH = 0.0
Coulombic cutoff = 8.5

For the TIP4P/2005 model (J Chem Phys, 123, 234505 (2005); http://dx.doi.org/10.1063/1.2121687), these values
can be used:

O mass = 15.9994

H mass = 1.008

O charge =-1.1128

H charge = 0.5564

10 of OH bond = 0.9572
theta of HOH angle = 104.52
OM distance = 0.1546

LJ epsilon of O-O = 0.1852
LJ sigma of O-O =3.1589
LJ epsilon, sigma of OH, HH = 0.0
Coulombic cutoff = 8.5

These are the parameters to use for TIP4P with a long-range Coulombic solver (e.g. Ewald or PPPM in
LAMMPS):

O mass = 15.9994

H mass = 1.008

O charge =-1.0484

H charge = 0.5242

r0 of OH bond = 0.9572

theta of HOH angle = 104.52

OM distance = 0.1250

LJ epsilon of O-O = 0.16275

LJ sigma of O-O = 3.16435

LJ epsilon, sigma of OH, HH = 0.0

Note that the when using the TIP4P pair style, the neighobr list cutoff for Coulomb interactions is effectively
extended by a distance 2 * (OM distance), to account for the offset distance of the fictitious charges on O atoms in
water molecules. Thus it is typically best in an efficiency sense to use a LJ cutoff >= Coulomb cutoff + 2*(OM
distance), to shrink the size of the neighbor list. This leads to slightly larger cost for the long-range calculation, so
you can test the trade-off for your model. The OM distance and the LJ and Coulombic cutoffs are set in the
pair_style lj/cut/tip4p/long command.

Wikipedia also has a nice article on water models.

69

http://en.wikipedia.org/wiki/Water_model

6.9 SPC water model

The SPC water model specifies a 3-site rigid water molecule with charges and Lennard-Jones parameters assigned
to each of the 3 atoms. In LAMMPS the fix shake command can be used to hold the two O-H bonds and the
H-O-H angle rigid. A bond style of harmonic and an angle style of harmonic or charmm should also be used.

These are the additional parameters (in real units) to set for O and H atoms and the water molecule to run a rigid
SPC model.

O mass = 15.9994

H mass = 1.008

O charge =-0.820

H charge = 0.410

LJ epsilon of OO =0.1553

LJ sigma of OO =3.166

LJ epsilon, sigma of OH, HH = 0.0
r0 of OH bond = 1.0

theta of HOH angle = 109.47

Note that as originally proposed, the SPC model was run with a 9 Angstrom cutoff for both LJ and Coulommbic
terms. It can also be used with long-range Coulombics (Ewald or PPPM in LAMMPS), without changing any of
the parameters above, though it becomes a different model in that mode of usage.

The SPC/E (extended) water model is the same, except the partial charge assignemnts change:

O charge =-0.8476
H charge = 0.4238

See the (Berendsen) reference for more details on both the SPC and SPC/E models.

Wikipedia also has a nice article on water models.

6.10 Coupling LAMMPS to other codes

LAMMPS is designed to allow it to be coupled to other codes. For example, a quantum mechanics code might
compute forces on a subset of atoms and pass those forces to LAMMPS. Or a continuum finite element (FE)
simulation might use atom positions as boundary conditions on FE nodal points, compute a FE solution, and
return interpolated forces on MD atoms.

LAMMPS can be coupled to other codes in at least 3 ways. Each has advantages and disadvantages, which you'll
have to think about in the context of your application.

(1) Define a new fix command that calls the other code. In this scenario, LAMMPS is the driver code. During its
timestepping, the fix is invoked, and can make library calls to the other code, which has been linked to LAMMPS
as a library. This is the way the POEMS package that performs constrained rigid-body motion on groups of atoms
is hooked to LAMMPS. See the fix_poems command for more details. See this section of the documentation for
info on how to add a new fix to LAMMPS.

(2) Define a new LAMMPS command that calls the other code. This is conceptually similar to method (1), but in

this case LAMMPS and the other code are on a more equal footing. Note that now the other code is not called
during the timestepping of a LAMMPS run, but between runs. The LAMMPS input script can be used to alternate

70

http://en.wikipedia.org/wiki/Water_model
http://www.rpi.edu/~anderk5/lab

LAMMPS runs with calls to the other code, invoked via the new command. The run command facilitates this with
its every option, which makes it easy to run a few steps, invoke the command, run a few steps, invoke the
command, etc.

In this scenario, the other code can be called as a library, as in (1), or it could be a stand-alone code, invoked by a
system() call made by the command (assuming your parallel machine allows one or more processors to start up
another program). In the latter case the stand-alone code could communicate with LAMMPS thru files that the
command writes and reads.

See Section_modify of the documentation for how to add a new command to LAMMPS.

(3) Use LAMMPS as a library called by another code. In this case the other code is the driver and calls LAMMPS
as needed. Or a wrapper code could link and call both LAMMPS and another code as libraries. Again, the run
command has options that allow it to be invoked with minimal overhead (no setup or clean-up) if you wish to do
multiple short runs, driven by another program.

Examples of driver codes that call LAMMPS as a library are included in the examples/COUPLE directory of the
LAMMPS distribution; see examples/fCOUPLE/README for more details:

¢ simple: simple driver programs in C++ and C which invoke LAMMPS as a library

¢ Jammps_quest: coupling of LAMMPS and Quest, to run classical MD with quantum forces calculated by
a density functional code

¢ lammps_spparks: coupling of LAMMPS and SPPARKS, to couple a kinetic Monte Carlo model for grain
growth using MD to calculate strain induced across grain boundaries

This section of the documentation describes how to build LAMMPS as a library. Once this is done, you can
interface with LAMMPS either via C++, C, Fortran, or Python (or any other language that supports a vanilla
C-like interface). For example, from C++ you could create one (or more) "instances" of LAMMPS, pass it an
input script to process, or execute individual commands, all by invoking the correct class methods in LAMMPS.
From C or Fortran you can make function calls to do the same things. See Section_python of the manual for a
description of the Python wrapper provided with LAMMPS that operates through the LAMMPS library interface.

The files src/library.cpp and library.h contain the C-style interface to LAMMPS. See Section_howto 19 of the
manual for a description of the interface and how to extend it for your needs.

Note that the lammps_open() function that creates an instance of LAMMPS takes an MPI communicator as an
argument. This means that instance of LAMMPS will run on the set of processors in the communicator. Thus the
calling code can run LAMMPS on all or a subset of processors. For example, a wrapper script might decide to
alternate between LAMMPS and another code, allowing them both to run on all the processors. Or it might
allocate half the processors to LAMMPS and half to the other code and run both codes simultaneously before
syncing them up periodically. Or it might instantiate multiple instances of LAMMPS to perform different
calculations.

6.11 Visualizing LAMMPS snapshots

LAMMPS itself does not do visualization, but snapshots from LAMMPS simulations can be visualized (and
analyzed) in a variety of ways.

LAMMPS snapshots are created by the dump command which can create files in several formats. The native

LAMMPS dump format is a text file (see "dump atom" or "dump custom") which can be visualized by the xmovie
program, included with the LAMMPS package. This produces simple, fast 2d projections of 3d systems, and can

71

http://dft.sandia.gov/Quest
http://www.sandia.gov/~sjplimp/spparks.html

be useful for rapid debugging of simulation geometry and atom trajectories.

Several programs included with LAMMPS as auxiliary tools can convert native LAMMPS dump files to other
formats. See the Section_tools doc page for details. The first is the ch2lmp tool, which contains a lammps2pdb
Perl script which converts LAMMPS dump files into PDB files. The second is the Imp2arc tool which converts
LAMMPS dump files into Accelrys' Insight MD program files. The third is the Imp2cfg tool which converts
LAMMPS dump files into CFG files which can be read into the AtomEye visualizer.

A Python-based toolkit distributed by our group can read native LAMMPS dump files, including custom dump
files with additional columns of user-specified atom information, and convert them to various formats or pipe
them into visualization software directly. See the Pizza.py WWW site for details. Specifically, Pizza.py can
convert LAMMPS dump files into PDB, XYZ, Ensight, and VTK formats. Pizza.py can pipe LAMMPS dump
files directly into the Raster3d and RasMol visualization programs. Pizza.py has tools that do interactive 3d
OpenGL visualization and one that creates SVG images of dump file snapshots.

LAMMPS can create XYZ files directly (via "dump xyz") which is a simple text-based file format used by many
visualization programs including VMD.

LAMMPS can create DCD files directly (via "dump dcd") which can be read by VMD in conjunction with a
CHARMM PSF file. Using this form of output avoids the need to convert LAMMPS snapshots to PDB files. See
the dump command for more information on DCD files.

LAMMPS can create XTC files directly (via "dump xtc") which is GROMACS file format which can also be read
by VMD for visualization. See the dump command for more information on XTC files.

6.12 Triclinic (non-orthogonal) simulation boxes

By default, LAMMPS uses an orthogonal simulation box to encompass the particles. The boundary command sets
the boundary conditions of the box (periodic, non-periodic, etc). The orthogonal box has its "origin" at
(xlo,ylo,zlo) and is defined by 3 edge vectors starting from the origin given by a = (xhi-x10,0,0); b = (0,yhi-ylo,0);
¢ = (0,0,zhi-zlo). The 6 parameters (xlo,xhi,ylo,yhi,zlo,zhi) are defined at the time the simulation box is created,
e.g. by the create_box or read_data or read_restart commands. Additionally, LAMMPS defines box size
parameters Ix,ly,lz where Ix = xhi-xlo, and similarly in the y and z dimensions. The 6 parameters, as well as
Ix,ly,lz, can be output via the thermo_style custom command.

LAMMPS also allows simulations to be performed in triclinic (non-orthogonal) simulation boxes shaped as a
parallelepiped with triclinic symmetry. The parallelepiped has its "origin" at (xlo,ylo,zlo) and is defined by 3 edge
vectors starting from the origin given by a = (xhi-x10,0,0); b = (xy,yhi-ylo,0); ¢ = (xz,yz,zhi-zlo). xy,xz,yz can be
0.0 or positive or negative values and are called "tilt factors" because they are the amount of displacement applied
to faces of an originally orthogonal box to transform it into the parallelepiped. In LAMMPS the triclinic
simulation box edge vectors a, b, and ¢ cannot be arbitrary vectors. As indicated, a must lie on the positive x axis.
b must lie in the xy plane, with strictly positive y component. ¢ may have any orientation with strictly positive z
component. The requirement that a, b, and ¢ have strictly positive X, y, and z components, respectively, ensures
that a, b, and ¢ form a complete right-handed basis. These restrictions impose no loss of generality, since it is
possible to rotate/invert any set of 3 crystal basis vectors so that they conform to the restrictions.

For example, assume that the 3 vectors A,B,C are the edge vectors of a general parallelepiped, where there is no

restriction on A,B,C other than they form a complete right-handed basis i.e. A x B.. C > 0. The equivalent
LAMMPS a,b,c are a linear rotation of A, B, and C and can be computed as follows:

72

http://mt.seas.upenn.edu/Archive/Graphics/A
http://www.sandia.gov/~sjplimp/pizza.html
http://www.ensight.com
http://www.ks.uiuc.edu/Research/vmd
http://www.ks.uiuc.edu/Research/vmd
http://www.ks.uiuc.edu/Research/vmd

o
o
U
o
s
|
T
o~

S
I
oy
>
I
oy
2

¢; = |C-(AxB)] = +/C?—c2—¢?

where A = |Al indicates the scalar length of A. The ~ hat symbol indicates the corresponding unit vector. beta and
gamma are angles between the vectors described below. Note that by construction, a, b, and ¢ have strictly
positive X, y, and z components, respectively. If it should happen that A, B, and C form a left-handed basis, then
the above equations are not valid for c. In this case, it is necessary to first apply an inversion. This can be
achieved by interchanging two basis vectors or by changing the sign of one of them.

For consistency, the same rotation/inversion applied to the basis vectors must also be applied to atom positions,
velocities, and any other vector quantities. This can be conveniently achieved by first converting to fractional

coordinates in the old basis and then converting to distance coordinates in the new basis. The transformation is
given by the following equation:

B xC
CxAl]-X
A xB

1
V

X

(a b c)-

where V is the volume of the box, X is the original vector quantity and x is the vector in the LAMMPS basis.

There is no requirement that a triclinic box be periodic in any dimension, though it typically should be in at least
the 2nd dimension of the tilt (y in xy) if you want to enforce a shift in periodic boundary conditions across that

73

boundary. Some commands that work with triclinic boxes, e.g. the fix deform and fix npt commands, require
periodicity or non-shrink-wrap boundary conditions in specific dimensions. See the command doc pages for
details.

The 9 parameters (xlo,xhi,ylo,yhi,zlo,zhi,xy,xz,yz) are defined at the time the simluation box is created. This
happens in one of 3 ways. If the create_box command is used with a region of style prism, then a triclinic box is
setup. See the region command for details. If the read_data command is used to define the simulation box, and the
header of the data file contains a line with the "xy xz yz" keyword, then a triclinic box is setup. See the read_data
command for details. Finally, if the read_restart command reads a restart file which was written from a simulation
using a triclinic box, then a triclinic box will be setup for the restarted simulation.

Note that you can define a triclinic box with all 3 tilt factors = 0.0, so that it is initially orthogonal. This is
necessary if the box will become non-orthogonal, e.g. due to the fix npt or fix deform commands. Alternatively,
you can use the change_box command to convert a simulation box from orthogonal to triclinic and vice versa.

As with orthogonal boxes, LAMMPS defines triclinic box size parameters 1x,ly,1z where 1x = xhi-xlo, and
similarly in the y and z dimensions. The 9 parameters, as well as 1x,ly,1z, can be output via the thermo_style
custom command.

To avoid extremely tilted boxes (which would be computationally inefficient), LAMMPS normally requires that
no tilt factor can skew the box more than half the distance of the parallel box length, which is the 1st dimension in
the tilt factor (x for xz). This is required both when the simulation box is created, e.g. via the create_box or
read_data commands, as well as when the box shape changes dynamically during a simulation, e.g. via the fix
deform or fix npt commands.

For example, if xlo = 2 and xhi = 12, then the x box length is 10 and the xy tilt factor must be between -5 and 5.
Similarly, both xz and yz must be between -(xhi-x10)/2 and +(yhi-ylo)/2. Note that this is not a limitation, since if
the maximum tilt factor is 5 (as in this example), then configurations with tilt = ..., -15, -5, 5, 15, 25, ... are
geometrically all equivalent. If the box tilt exceeds this limit during a dynamics run (e.g. via the fix deform
command), then the box is "flipped" to an equivalent shape with a tilt factor within the bounds, so the run can
continue. See the fix deform doc page for further details.

One exception to this rule is if the 1st dimension in the tilt factor (x for xy) is non-periodic. In that case, the limits
on the tilt factor are not enforced, since flipping the box in that dimension does not change the atom positions due
to non-periodicity. In this mode, if you tilt the system to extreme angles, the simulation will simply become
inefficient, due to the highly skewed simulation box.

The limitation on not creating a simulation box with a tilt factor skewing the box more than half the distance of
the parallel box length can be overridden via the box command. Setting the filt keyword to large allows any tilt
factors to be specified.

Box flips that may occur using the fix deform or fix npt commands can be turned off using the flip no option with
either of the commands.

Note that if a simulation box has a large tilt factor, LAMMPS will run less efficiently, due to the large volume of
communication needed to acquire ghost atoms around a processor's irregular-shaped sub-domain. For extreme
values of tilt, LAMMPS may also lose atoms and generate an error.

Triclinic crystal structures are often defined using three lattice constants a, b, and ¢, and three angles alpha, beta
and gamma. Note that in this nomenclature, the a, b, and c lattice constants are the scalar lengths of the edge
vectors a, b, and ¢ defined above. The relationship between these 6 quantities (a,b,c,alpha,beta,gamma) and the
LAMMPS box sizes (Ix,ly,1z) = (xhi-xlo,yhi-ylo,zhi-zlo) and tilt factors (xy,xz,yz) is as follows:

74

COS (¥
cos 3

COS 7Y

— 1}73 |- K}rz
= 12° + xz* + yZ°
Xy * Xz + 1y * yz

bxc

The inverse relationship can be written as follows:

Ix =

Xy =

(1
bcos~y
ccos 3

2

b* — xy

b * ccos o — Xy * Xz

ly

‘) ¥ ¥
¢ — xz° — yz?

The values of a, b, ¢ , alpha, beta , and gamma can be printed out or accessed by computes using the thermo_style
custom keywords cella, cellb, cellc, cellalpha, cellbeta, cellgamma, respectively.

As discussed on the dump command doc page, when the BOX BOUNDS for a snapshot is written to a dump file

for a triclinic box, an orthogonal bounding box which encloses the triclinic simulation box is output, along with

the 3 tilt factors (xy, xz, yz) of the triclinic box, formatted as follows:

ITEM: BOX BOUNDS xy xz yz
x1lo_bound xhi_bound xy
ylo_bound yhi_bound xz
zlo_bound zhi_bound yz

This bounding box is convenient for many visualization programs and is calculated from the 9 triclinic box

parameters (xlo,xhi,ylo,yhi,zlo,zhi,xy,xz,yz) as follows:

xlo_bound
xhi_bound
ylo_bound

ylo + MIN(0.0,vyz)

xlo + MIN(0.0,xy,xz,Xy+xz)
xhi + MAX (0.0, xy,xz,Xy+xz)

75

yvhi_bound yvhi + MAX(0.0,yz)
zlo_bound zlo
zhi_bound = zhi

These formulas can be inverted if you need to convert the bounding box back into the triclinic box parameters,
e.g. xlo = xlo_bound - MIN(0.0,xy,xz,Xy+Xxz).

One use of triclinic simulation boxes is to model solid-state crystals with triclinic symmetry. The lattice command
can be used with non-orthogonal basis vectors to define a lattice that will tile a triclinic simulation box via the
create_atoms command.

A second use is to run Parinello-Rahman dyanamics via the fix npt command, which will adjust the xy, xz, yz tilt
factors to compensate for off-diagonal components of the pressure tensor. The analalog for an energy
minimization is the fix box/relax command.

A third use is to shear a bulk solid to study the response of the material. The fix deform command can be used for
this purpose. It allows dynamic control of the xy, xz, yz tilt factors as a simulation runs. This is discussed in the
next section on non-equilibrium MD (NEMD) simulations.

6.13 NEMD simulations

Non-equilibrium molecular dynamics or NEMD simulations are typically used to measure a fluid's rheological
properties such as viscosity. In LAMMPS, such simulations can be performed by first setting up a non-orthogonal
simulation box (see the preceding Howto section).

A shear strain can be applied to the simulation box at a desired strain rate by using the fix deform command. The
fix nvt/sllod command can be used to thermostat the sheared fluid and integrate the SLLOD equations of motion
for the system. Fix nvt/sllod uses compute temp/deform to compute a thermal temperature by subtracting out the
streaming velocity of the shearing atoms. The velocity profile or other properties of the fluid can be monitored via
the fix ave/spatial command.

As discussed in the previous section on non-orthogonal simulation boxes, the amount of tilt or skew that can be
applied is limited by LAMMPS for computational efficiency to be 1/2 of the parallel box length. However, fix
deform can continuously strain a box by an arbitrary amount. As discussed in the fix deform command, when the
tilt value reaches a limit, the box is flipped to the opposite limit which is an equivalent tiling of periodic space.
The strain rate can then continue to change as before. In a long NEMD simulation these box re-shaping events
may occur many times.

In a NEMD simulation, the "remap" option of fix deform should be set to "remap v", since that is what fix
nvt/sllod assumes to generate a velocity profile consistent with the applied shear strain rate.

An alternative method for calculating viscosities is provided via the fix viscosity command.

6.14 Finite-size spherical and aspherical particles

Typical MD models treat atoms or particles as point masses. Sometimes it is desirable to have a model with
finite-size particles such as spheroids or ellipsoids or generalized aspherical bodies. The difference is that such
particles have a moment of inertia, rotational energy, and angular momentum. Rotation is induced by torque
coming from interactions with other particles.

76

LAMMPS has several options for running simulations with these kinds of particles. The following aspects are
discussed in turn:

¢ atom styles

® pair potentials

® time integration

¢ computes, thermodynamics, and dump output
¢ rigid bodies composed of finite-size particles

Example input scripts for these kinds of models are in the body, colloid, dipole, ellipse, line, peri, pour, and tri
directories of the examples directory in the LAMMPS distribution.

Atom styles

There are several atom styles that allow for definition of finite-size particles: sphere, dipole, ellipsoid, line, tri,
peri, and body.

The sphere style defines particles that are spheriods and each particle can have a unique diameter and mass (or
density). These particles store an angular velocity (omega) and can be acted upon by torque. The "set" command
can be used to modify the diameter and mass of individual particles, after then are created.

The dipole style does not actually define finite-size particles, but is often used in conjunction with spherical
particles, via a command like

atom_style hybrid sphere dipole

This is because when dipoles interact with each other, they induce torques, and a particle must be finite-size (i.e.
have a moment of inertia) in order to respond and rotate. See the atom_style dipole command for details. The
"set" command can be used to modify the orientation and length of the dipole moment of individual particles,
after then are created.

The ellipsoid style defines particles that are ellipsoids and thus can be aspherical. Each particle has a shape,
specified by 3 diameters, and mass (or density). These particles store an angular momentum and their orientation
(quaternion), and can be acted upon by torque. They do not store an angular velocity (omega), which can be in a
different direction than angular momentum, rather they compute it as needed. The "set" command can be used to
modify the diameter, orientation, and mass of individual particles, after then are created. It also has a brief
explanation of what quaternions are.

The line style defines line segment particles with two end points and a mass (or density). They can be used in 2d
simulations, and they can be joined together to form rigid bodies which represent arbitrary polygons.

The tri style defines triangular particles with three corner points and a mass (or density). They can be used in 3d
simulations, and they can be joined together to form rigid bodies which represent arbitrary particles with a
triangulated surface.

The peri style is used with Peridynamic models and defines particles as having a volume, that is used internally in
the pair_style peri potentials.

The body style allows for definition of particles which can represent complex entities, such as surface meshes of

discrete points, collections of sub-particles, deformable objects, etc. The body style is discussed in more detail on
the body doc page.

77

Note that if one of these atom styles is used (or multiple styles via the atom_style hybrid command), not all
particles in the system are required to be finite-size or aspherical.

For example, in the ellipsoid style, if the 3 shape parameters are set to the same value, the particle will be a sphere
rather than an ellipsoid. If the 3 shape parameters are all set to 0.0 or if the diameter is set to 0.0, it will be a point
particle. In the line or tri style, if the lineflag or triflag is specified as 0, then it will be a point particle.

Some of the pair styles used to compute pairwise interactions between finite-size particles also compute the
correct interaction with point particles as well, e.g. the interaction between a point particle and a finite-size
particle or between two point particles. If necessary, pair_style hybrid can be used to insure the correct
interactions are computed for the appropriate style of interactions. Likewise, using groups to partition particles
(ellipsoids versus spheres versus point particles) will allow you to use the appropriate time integrators and
temperature computations for each class of particles. See the doc pages for various commands for details.

Also note that for 2d simulations, atom styles sphere and ellipsoid still use 3d particles, rather than as circular
disks or ellipses. This means they have the same moment of inertia as the 3d object. When temperature is
computed, the correct degrees of freedom are used for rotation in a 2d versus 3d system.

Pair potentials

When a system with finite-size particles is defined, the particles will only rotate and experience torque if the force
field computes such interactions. These are the various pair styles that generate torque:

¢ pair_style gran/history
¢ pair_style gran/hertzian
® pair_style gran/no_history
¢ pair_style dipole/cut

® pair_style gayberne

® pair_style resquared

® pair_style brownian

¢ pair_style lubricate

¢ pair_style line/lj

® pair_style tri/lj

® pair_style body

The granular pair styles are used with spherical particles. The dipole pair style is used with the dipole atom style,
which could be applied to spherical or ellipsoidal particles. The GayBerne and REsquared potentials require
ellipsoidal particles, though they will also work if the 3 shape parameters are the same (a sphere). The Brownian
and lubrication potentials are used with spherical particles. The line, tri, and body potentials are used with line
segment, triangular, and body particles respectively.

Time integration

There are several fixes that perform time integration on finite-size spherical particles, meaning the integrators
update the rotational orientation and angular velocity or angular momentum of the particles:

¢ fix nve/sphere
¢ fix nvt/sphere
¢ fix npt/sphere
Likewise, there are 3 fixes that perform time integration on ellipsoidal particles:

¢ fix nve/asphere

78

¢ fix nvt/asphere
¢ fix npt/asphere

The advantage of these fixes is that those which thermostat the particles include the rotational degrees of freedom
in the temperature calculation and thermostatting. The fix langevin command can also be used with its omgea or
angmom options to thermostat the rotational degrees of freedom for spherical or ellipsoidal particles. Other
thermostatting fixes only operate on the translational kinetic energy of finite-size particles.

These fixes perform constant NVE time integration on line segment, triangular, and body particles:

e fix nve/line
e fix nve/tri
¢ fix nve/body

Note that for mixtures of point and finite-size particles, these integration fixes can only be used with groups which
contain finite-size particles.

Computes, thermodynamics, and dump output
There are several computes that calculate the temperature or rotational energy of spherical or ellipsoidal particles:

¢ compute temp/sphere

¢ compute temp/asphere

¢ compute erotate/sphere
¢ compute erotate/asphere

These include rotational degrees of freedom in their computation. If you wish the thermodynamic output of
temperature or pressure to use one of these computes (e.g. for a system entirely composed of finite-size particles),
then the compute can be defined and the thermo_modify command used. Note that by default thermodynamic
quantities will be calculated with a temperature that only includes translational degrees of freedom. See the
thermo_style command for details.

These commands can be used to output various attributes of finite-size particles:

¢ dump custom

® compute property/atom
¢ dump local

¢ compute body/local

Attributes include the dipole moment, the angular velocity, the angular momentum, the quaternion, the torque, the
end-point and corner-point coordinates (for line and tri particles), and sub-particle attributes of body particles.

Rigid bodies composed of finite-size particles

The fix rigid command treats a collection of particles as a rigid body, computes its inertia tensor, sums the total
force and torque on the rigid body each timestep due to forces on its constituent particles, and integrates the
motion of the rigid body.

If any of the constituent particles of a rigid body are finite-size particles (spheres or ellipsoids or line segments or
triangles), then their contribution to the inertia tensor of the body is different than if they were point particles.
This means the rotational dynamics of the rigid body will be different. Thus a model of a dimer is different if the
dimer consists of two point masses versus two spheroids, even if the two particles have the same mass. Finite-size
particles that experience torque due to their interaction with other particles will also impart that torque to a rigid

79

body they are part of.
See the "fix rigid" command for example of complex rigid-body models it is possible to define in LAMMPS.

Note that the fix shake command can also be used to treat 2, 3, or 4 particles as a rigid body, but it always
assumes the particles are point masses.

Also note that body particles cannot be modeled with the fix rigid command. Body particles are treated by
LAMMPS as single particles, though they can store internal state, such as a list of sub-particles. Individual body
partices are typically treated as rigid bodies, and their motion integrated with a command like fix nve/body.
Interactions between pairs of body particles are computed via a command like pair_style body.

6.15 Output from LAMMPS (thermo, dumps, computes, fixes, variables)
There are four basic kinds of LAMMPS output:

¢ Thermodynamic output, which is a list of quantities printed every few timesteps to the screen and logfile.

¢ Dump files, which contain snapshots of atoms and various per-atom values and are written at a specified
frequency.

¢ Certain fixes can output user-specified quantities to files: fix ave/time for time averaging, fix ave/spatial
for spatial averaging, and fix print for single-line output of variables. Fix print can also output to the
screen.

® Restart files.

A simulation prints one set of thermodynamic output and (optionally) restart files. It can generate any number of
dump files and fix output files, depending on what dump and fix commands you specify.

As discussed below, LAMMPS gives you a variety of ways to determine what quantities are computed and
printed when the thermodynamics, dump, or fix commands listed above perform output. Throughout this
discussion, note that users can also add their own computes and fixes to LAMMPS which can then generate
values that can then be output with these commands.

The following sub-sections discuss different LAMMPS command related to output and the kind of data they
operate on and produce:

¢ Global/per-atom/local data

e Scalar/vector/array data

¢ Thermodynamic output

® Dump file output

¢ Fixes that write output files

e Computes that process output quantities
¢ Fixes that process output quantities

e Computes that generate values to output
¢ Fixes that generate values to output

¢ Variables that generate values to output
¢ Summary table of output options and data flow between commands

Global/per-atom/local data

Various output-related commands work with three different styles of data: global, per-atom, or local. A global
datum is one or more system-wide values, e.g. the temperature of the system. A per-atom datum is one or more

80

values per atom, e.g. the kinetic energy of each atom. Local datums are calculated by each processor based on the
atoms it owns, but there may be zero or more per atom, e.g. a list of bond distances.

Scalar/vector/array data

Global, per-atom, and local datums can each come in three kinds: a single scalar value, a vector of values, or a 2d
array of values. The doc page for a "compute" or "fix" or "variable" that generates data will specify both the style
and kind of data it produces, e.g. a per-atom vector.

When a quantity is accessed, as in many of the output commands discussed below, it can be referenced via the
following bracket notation, where ID in this case is the ID of a compute. The leading "c_" would be replaced by
"f " for a fix, or "v_" for a variable:

c_ID entire scalar, vector, or array

c_ID[I] |one element of vector, one column of array

c_ID[I][J] |one element of array

In other words, using one bracket reduces the dimension of the data once (vector -> scalar, array -> vector). Using
two brackets reduces the dimension twice (array -> scalar). Thus a command that uses scalar values as input can
typically also process elements of a vector or array.

Thermodynamic output

The frequency and format of thermodynamic output is set by the thermo, thermo_style, and thermo_modify
commands. The thermo_style command also specifies what values are calculated and written out. Pre-defined
keywords can be specified (e.g. press, etotal, etc). Three additional kinds of keywords can also be specified (c_ID,
f_ID, v_name), where a compute or fix or variable provides the value to be output. In each case, the compute, fix,
or variable must generate global values for input to the thermo_style custom command.

Note that thermodynamic output values can be "extensive" or "intensive". The former scale with the number of
atoms in the system (e.g. total energy), the latter do not (e.g. temperature). The setting for thermo_modify norm
determines whether extensive quantities are normalized or not. Computes and fixes produce either extensive or
intensive values; see their individual doc pages for details. Equal-style variables produce only intensive values;
you can include a division by "natoms" in the formula if desired, to make an extensive calculation produce an
intensive result.

Dump file output

Dump file output is specified by the dump and dump_modify commands. There are several pre-defined formats
(dump atom, dump xtc, etc).

There is also a dump custom format where the user specifies what values are output with each atom. Pre-defined
atom attributes can be specified (id, x, fx, etc). Three additional kinds of keywords can also be specified (c_ID,
f_ID, v_name), where a compute or fix or variable provides the values to be output. In each case, the compute,
fix, or variable must generate per-atom values for input to the dump custom command.

There is also a dump local format where the user specifies what local values to output. A pre-defined index
keyword can be specified to enumuerate the local values. Two additional kinds of keywords can also be specified
(c_ID, f_ID), where a compute or fix or variable provides the values to be output. In each case, the compute or fix
must generate local values for input to the dump local command.

81

Fixes that write output files

Several fixes take various quantities as input and can write output files: fix ave/time, fix ave/spatial, fix ave/histo,
fix ave/correlate, and fix print.

The fix ave/time command enables direct output to a file and/or time-averaging of global scalars or vectors. The
user specifies one or more quantities as input. These can be global compute values, global fix values, or variables
of any style except the atom style which produces per-atom values. Since a variable can refer to keywords used by
the thermo_style custom command (like temp or press) and individual per-atom values, a wide variety of
quantities can be time averaged and/or output in this way. If the inputs are one or more scalar values, then the fix
generate a global scalar or vector of output. If the inputs are one or more vector values, then the fix generates a
global vector or array of output. The time-averaged output of this fix can also be used as input to other output
commands.

The fix ave/spatial command enables direct output to a file of spatial-averaged per-atom quantities like those
output in dump files, within 1d layers of the simulation box. The per-atom quantities can be atom density (mass or
number) or atom attributes such as position, velocity, force. They can also be per-atom quantities calculated by a
compute, by a fix, or by an atom-style variable. The spatial-averaged output of this fix can also be used as input to
other output commands.

The fix ave/histo command enables direct output to a file of histogrammed quantities, which can be global or
per-atom or local quantities. The histogram output of this fix can also be used as input to other output commands.

The fix ave/correlate command enables direct output to a file of time-correlated quantities, which can be global
scalars. The correlation matrix output of this fix can also be used as input to other output commands.

The fix print command can generate a line of output written to the screen and log file or to a separate file,
periodically during a running simulation. The line can contain one or more variable values for any style variable
except the atom style). As explained above, variables themselves can contain references to global values
generated by thermodynamic keywords, computes, fixes, or other variables, or to per-atom values for a specific
atom. Thus the fix print command is a means to output a wide variety of quantities separate from normal
thermodynamic or dump file output.

Computes that process output quantities

The compute reduce and compute reduce/region commands take one or more per-atom or local vector quantities
as inputs and "reduce" them (sum, min, max, ave) to scalar quantities. These are produced as output values which
can be used as input to other output commands.

The compute slice command take one or more global vector or array quantities as inputs and extracts a subset of
their values to create a new vector or array. These are produced as output values which can be used as input to
other output commands.

The compute property/atom command takes a list of one or more pre-defined atom attributes (id, x, fx, etc) and
stores the values in a per-atom vector or array. These are produced as output values which can be used as input to
other output commands. The list of atom attributes is the same as for the dump custom command.

The compute property/local command takes a list of one or more pre-defined local attributes (bond info, angle
info, etc) and stores the values in a local vector or array. These are produced as output values which can be used
as input to other output commands.

The compute atom/molecule command takes a list of one or more per-atom quantities (from a compute, fix,
per-atom variable) and sums the quantities on a per-molecule basis. It produces a global vector or array as output

82

values which can be used as input to other output commands.

Fixes that process output quantities

The fix ave/atom command performs time-averaging of per-atom vectors. The per-atom quantities can be atom
attributes such as position, velocity, force. They can also be per-atom quantities calculated by a compute, by a fix,
or by an atom-style variable. The time-averaged per-atom output of this fix can be used as input to other output
commands.

The fix store/state command can archive one or more per-atom attributes at a particular time, so that the old
values can be used in a future calculation or output. The list of atom attributes is the same as for the dump custom
command, including per-atom quantities calculated by a compute, by a fix, or by an atom-style variable. The
output of this fix can be used as input to other output commands.

Computes that generate values to output

Every compute in LAMMPS produces either global or per-atom or local values. The values can be scalars or
vectors or arrays of data. These values can be output using the other commands described in this section. The doc
page for each compute command describes what it produces. Computes that produce per-atom or local values
have the word "atom" or "local" in their style name. Computes without the word "atom" or "local" produce global
values.

Fixes that generate values to output

Some fixes in LAMMPS produces either global or per-atom or local values which can be accessed by other
commands. The values can be scalars or vectors or arrays of data. These values can be output using the other
commands described in this section. The doc page for each fix command tells whether it produces any output
quantities and describes them.

Variables that generate values to output

Every variables defined in an input script generates either a global scalar value or a per-atom vector (only
atom-style variables) when it is accessed. The formulas used to define equal- and atom-style variables can contain
references to the thermodynamic keywords and to global and per-atom data generated by computes, fixes, and
other variables. The values generated by variables can be output using the other commands described in this
section.

Summary table of output options and data flow between commands

This table summarizes the various commands that can be used for generating output from LAMMPS. Each
command produces output data of some kind and/or writes data to a file. Most of the commands can take data
from other commands as input. Thus you can link many of these commands together in pipeline form, where data
produced by one command is used as input to another command and eventually written to the screen or to a file.
Note that to hook two commands together the output and input data types must match, e.g. global/per-atom/local
data and scalar/vector/array data.

Also note that, as described above, when a command takes a scalar as input, that could be an element of a vector
or array. Likewise a vector input could be a column of an array.

Command Input Output
thermo_style custom global scalars screen, log file
dump custom per-atom vectors dump file

83

dump local local vectors dump file

fix print global scalar from variable screen, file

print global scalar from variable screen

computes N/A global/per-atom/local scalar/vector/array
fixes N/A global/per-atom/local scalar/vector/array
variables global scalars, per-atom vectors global scalar, per-atom vector

compute reduce

per-atom/local vectors

global scalar/vector

compute slice

global vectors/arrays

global vector/array

compute property/atom

per-atom vectors

per-atom vector/array

compute property/local

local vectors

local vector/array

compute atom/molecule

per-atom vectors

global vector/array

fix ave/atom

per-atom vectors

per-atom vector/array

fix ave/time

global scalars/vectors

global scalar/vector/array, file

fix ave/spatial

per-atom vectors

global array, file

fix ave/histo

global/per-atom/local scalars and vectors

global array, file

fix ave/correlate

global scalars

global array, file

fix store/state

per-atom vectors

per-atom vector/array

6.16 Thermostatting, barostatting, and computing temperature

Thermostatting means controlling the temperature of particles in an MD simulation. Barostatting means
controlling the pressure. Since the pressure includes a kinetic component due to particle velocities, both these
operations require calculation of the temperature. Typically a target temperature (T) and/or pressure (P) is

specified by the user, and the thermostat or barostat attempts to equilibrate the system to the requested T and/or P.

Temperature is computed as kinetic energy divided by some number of degrees of freedom (and the Boltzmann
constant). Since kinetic energy is a function of particle velocity, there is often a need to distinguish between a

particle's advection velocity (due to some aggregate motiion of particles) and its thermal velocity. The sum of the
two is the particle's total velocity, but the latter is often what is wanted to compute a temperature.

LAMMPS has several options for computing temperatures, any of which can be used in thermostatting and
barostatting. These compute commands calculate temperature, and the compute pressure command calculates

pressure.

® compute temp

e compute temp/sphere
e compute temp/asphere
e compute temp/com

e compute temp/deform
e compute temp/partial
e compute temp/profile
e compute temp/ramp

e compute temp/region

All but the first 3 calculate velocity biases (i.e. advection velocities) that are removed when computing the
thermal temperature. Compute temp/sphere and compute temp/asphere compute kinetic energy for finite-size
particles that includes rotational degrees of freedom. They both allow, as an extra argument, which is another

84

temperature compute that subtracts a velocity bias. This allows the translational velocity of spherical or aspherical
particles to be adjusted in prescribed ways.

Thermostatting in LAMMPS is performed by fixes, or in one case by a pair style. Four thermostatting fixes are
currently available: Nose-Hoover (nvt), Berendsen, Langevin, and direct rescaling (temp/rescale). Dissipative
particle dynamics (DPD) thermostatting can be invoked via the dpd/tstat pair style:

o fix nvt

¢ fix nvt/sphere

¢ fix nvt/asphere

¢ fix nvt/sllod

¢ fix temp/berendsen
¢ fix langevin

¢ fix temp/rescale

® pair_style dpd/tstat

Fix nvt only thermostats the translational velocity of particles. Fix nvt/sllod also does this, except that it subtracts
out a velocity bias due to a deforming box and integrates the SLLOD equations of motion. See the NEMD
simulations section of this page for further details. Fix nvt/sphere and fix nvt/asphere thermostat not only
translation velocities but also rotational velocities for spherical and aspherical particles.

DPD thermostatting alters pairwise interactions in a manner analagous to the per-particle thermostatting of fix
langevin.

Any of the thermostatting fixes can use temperature computes that remove bias for two purposes: (a) computing
the current temperature to compare to the requested target temperature, and (b) adjusting only the thermal
temperature component of the particle's velocities. See the doc pages for the individual fixes and for the
fix_modify command for instructions on how to assign a temperature compute to a thermostatting fix. For
example, you can apply a thermostat to only the x and z components of velocity by using it in conjunction with
compute temp/partial.

IMPORTANT NOTE: Only the nvt fixes perform time integration, meaning they update the velocities and
positions of particles due to forces and velocities respectively. The other thermostat fixes only adjust velocities;
they do NOT perform time integration updates. Thus they should be used in conjunction with a constant NVE
integration fix such as these:

¢ fix nve
¢ fix nve/sphere
¢ fix nve/asphere

Barostatting in LAMMPS is also performed by fixes. Two barosttating methods are currently available:
Nose-Hoover (npt and nph) and Berendsen:

¢ fix npt

¢ fix npt/sphere

¢ fix npt/asphere

¢ fix nph

¢ fix press/berendsen

The fix npt commands include a Nose-Hoover thermostat and barostat. Fix nph is just a Nose/Hoover barostat; it

does no thermostatting. Both fix nph and fix press/bernendsen can be used in conjunction with any of the
thermostatting fixes.

85

As with the thermostats, fix npt and fix nph only use translational motion of the particles in computing T and P
and performing thermo/barostatting. Fix npt/sphere and fix npt/asphere thermo/barostat using not only translation
velocities but also rotational velocities for spherical and aspherical particles.

All of the barostatting fixes use the compute pressure compute to calculate a current pressure. By default, this
compute is created with a simple compute temp (see the last argument of the compute pressure command), which
is used to calculated the kinetic componenet of the pressure. The barostatting fixes can also use temperature
computes that remove bias for the purpose of computing the kinetic componenet which contributes to the current
pressure. See the doc pages for the individual fixes and for the fix_modify command for instructions on how to
assign a temperature or pressure compute to a barostatting fix.

IMPORTANT NOTE: As with the thermostats, the Nose/Hoover methods (fix npt and fix nph) perform time
integration. Fix press/berendsen does NOT, so it should be used with one of the constant NVE fixes or with one
of the NVT fixes.

Finally, thermodynamic output, which can be setup via the thermo_style command, often includes temperature
and pressure values. As explained on the doc page for the thermo_style command, the default T and P are setup
by the thermo command itself. They are NOT the ones associated with any thermostatting or barostatting fix you
have defined or with any compute that calculates a temperature or pressure. Thus if you want to view these values
of T and P, you need to specify them explicitly via a thermo_style custom command. Or you can use the
thermo_modify command to re-define what temperature or pressure compute is used for default thermodynamic
output.

6.17 Walls
Walls in an MD simulation are typically used to bound particle motion, i.e. to serve as a boundary condition.

Walls in LAMMPS can be of rough (made of particles) or idealized surfaces. Ideal walls can be smooth,
generating forces only in the normal direction, or frictional, generating forces also in the tangential direction.

Rough walls, built of particles, can be created in various ways. The particles themselves can be generated like any
other particle, via the lattice and create_atoms commands, or read in via the read_data command.

Their motion can be constrained by many different commands, so that they do not move at all, move together as a
group at constant velocity or in response to a net force acting on them, move in a prescribed fashion (e.g. rotate
around a point), etc. Note that if a time integration fix like fix nve or fix nvt is not used with the group that
contains wall particles, their positions and velocities will not be updated.

¢ fix aveforce - set force on particles to average value, so they move together

¢ fix setforce - set force on particles to a value, e.g. 0.0

¢ fix freeze - freeze particles for use as granular walls

¢ fix nve/noforce - advect particles by their velocity, but without force

¢ fix move - prescribe motion of particles by a linear velocity, oscillation, rotation, variable

The fix move command offers the most generality, since the motion of individual particles can be specified with
variable formula which depends on time and/or the particle position.

For rough walls, it may be useful to turn off pairwise interactions between wall particles via the neigh_modify
exclude command.

86

Rough walls can also be created by specifying frozen particles that do not move and do not interact with mobile
particles, and then tethering other particles to the fixed particles, via a bond. The bonded particles do interact with
other mobile particles.

Idealized walls can be specified via several fix commands. Fix wall/gran creates frictional walls for use with
granular particles; all the other commands create smooth walls.

o fix wall/reflect - reflective flat walls

o fix wall/lj93 - flat walls, with Lennard-Jones 9/3 potential

o fix wall/lj126 - flat walls, with Lennard-Jones 12/6 potential

¢ fix wall/colloid - flat walls, with pair_style colloid potential

¢ fix wall/harmonic - flat walls, with repulsive harmonic spring potential
¢ fix wall/region - use region surface as wall

¢ fix wall/gran - flat or curved walls with pair_style granular potential

The [j93, [j126, colloid, and harmonic styles all allow the flat walls to move with a constant velocity, or oscillate
in time. The fix wall/region command offers the most generality, since the region surface is treated as a wall, and
the geometry of the region can be a simple primitive volume (e.g. a sphere, or cube, or plane), or a complex
volume made from the union and intersection of primitive volumes. Regions can also specify a volume "interior"
or "exterior" to the specified primitive shape or union or intersection. Regions can also be "dynamic" meaning
they move with constant velocity, oscillate, or rotate.

The only frictional idealized walls currently in LAMMPS are flat or curved surfaces specified by the fix wall/gran
command. At some point we plan to allow regoin surfaces to be used as frictional walls, as well as triangulated
surfaces.

6.18 Elastic constants

Elastic constants characterize the stiffness of a material. The formal definition is provided by the linear relation
that holds between the stress and strain tensors in the limit of infinitesimal deformation. In tensor notation, this is
expressed as s_ij = C_ijkl * e_kl, where the repeated indices imply summation. s_ij are the elements of the
symmetric stress tensor. e_kl are the elements of the symmetric strain tensor. C_ijkl are the elements of the fourth
rank tensor of elastic constants. In three dimensions, this tensor has 374=81 elements. Using Voigt notation, the
tensor can be written as a 6x6 matrix, where C_ij is now the derivative of s_i w.r.t. e_j. Because s_i is itself a
derivative w.r.t. e_i, it follows that C_ij is also symmetric, with at most 7*6/2 = 21 distinct elements.

At zero temperature, it is easy to estimate these derivatives by deforming the simulation box in one of the six
directions using the change_box command and measuring the change in the stress tensor. A general-purpose
script that does this is given in the examples/elastic directory described in this section.

Calculating elastic constants at finite temperature is more challenging, because it is necessary to run a simulation
that perfoms time averages of differential properties. One way to do this is to measure the change in average
stress tensor in an NVT simulations when the cell volume undergoes a finite deformation. In order to balance the
systematic and statistical errors in this method, the magnitude of the deformation must be chosen judiciously, and
care must be taken to fully equilibrate the deformed cell before sampling the stress tensor. Another approach is to
sample the triclinic cell fluctuations that occur in an NPT simulation. This method can also be slow to converge
and requires careful post-processing (Shinoda)

87

6.19 Library interface to LAMMPS

As described in Section_start 5, LAMMPS can be built as a library, so that it can be called by another code, used
in a coupled manner with other codes, or driven through a Python interface.

All of these methodologies use a C-style interface to LAMMPS that is provided in the files src/library.cpp and
src/library.h. The functions therein have a C-style argument list, but contain C++ code you could write yourself in
a C++ application that was invoking LAMMPS directly. The C++ code in the functions illustrates how to invoke
internal LAMMPS operations. Note that LAMMPS classes are defined within a LAMMPS namespace
(LAMMPS_NS) if you use them from another C++ application.

Library.cpp contains these 4 functions:

void lammps_open (int, char **, MPI_Comm, void **);
void lammps_close (void *);

void lammps_file(void *, char *);

char *lammps_command (void *, char *);

The lammps_open() function is used to initialize LAMMPS, passing in a list of strings as if they were
command-line arguments when LAMMPS is run in stand-alone mode from the command line, and a MPI
communicator for LAMMPS to run under. It returns a ptr to the LAMMPS object that is created, and which is
used in subsequent library calls. The lammps_open() function can be called multiple times, to create multiple
instances of LAMMPS.

LAMMPS will run on the set of processors in the communicator. This means the calling code can run LAMMPS
on all or a subset of processors. For example, a wrapper script might decide to alternate between LAMMPS and
another code, allowing them both to run on all the processors. Or it might allocate half the processors to
LAMMPS and half to the other code and run both codes simultaneously before syncing them up periodically. Or
it might instantiate multiple instances of LAMMPS to perform different calculations.

The lammps_close() function is used to shut down an instance of LAMMPS and free all its memory.

The lammps_file() and lammps_command() functions are used to pass a file or string to LAMMPS as if it were an
input script or single command in an input script. Thus the calling code can read or generate a series of LAMMPS
commands one line at a time and pass it thru the library interface to setup a problem and then run it, interleaving
the lammps_command() calls with other calls to extract information from LAMMPS, perform its own operations,
or call another code's library.

Other useful functions are also included in library.cpp. For example:

void *lammps_extract_global (void *, char ¥*)

void *lammps_extract_atom(void *, char ¥*)

void *lammps_extract_compute (void *, char *, int, int)

void *lammps_extract_fix(void *, char *, int, int, int, int)
void *lammps_extract_variable(void *, char *, char *)

int lammps_get_natoms (void ¥*)

void lammps_get_coords (void *, double *)

void lammps_put_coords (void *, double *)

These can extract various global or per-atom quantities from LAMMPS as well as values calculated by a
compute, fix, or variable. The "get" and "put" operations can retrieve and reset atom coordinates. See the
library.cpp file and its associated header file library.h for details.

The key idea of the library interface is that you can write any functions you wish to define how your code talks to
LAMMPS and add them to src/library.cpp and src/library.h, as well as to the Python interface. The routines you

88

add can access or change any LAMMPS data you wish. The examples/COUPLE and python directories have
example C++ and C and Python codes which show how a driver code can link to LAMMPS as a library, run
LAMMPS on a subset of processors, grab data from LAMMPS, change it, and put it back into LAMMPS.

6.20 Calculating thermal conductivity

The thermal conductivity kappa of a material can be measured in at least 4 ways using various options in
LAMMPS. See the examples/KAPPA directory for scripts that implement the 4 methods discussed here for a
simple Lennard-Jones fluid model. Also, see this section of the manual for an analogous discussion for viscosity.

The thermal conducitivity tensor kappa is a measure of the propensity of a material to transmit heat energy in a
diffusive manner as given by Fourier's law

J = -kappa grad(T)

where J is the heat flux in units of energy per area per time and grad(T) is the spatial gradient of temperature. The
thermal conductivity thus has units of energy per distance per time per degree K and is often approximated as an
isotropic quantity, i.e. as a scalar.

The first method is to setup two thermostatted regions at opposite ends of a simulation box, or one in the middle
and one at the end of a periodic box. By holding the two regions at different temperatures with a thermostatting
fix, the energy added to the hot region should equal the energy subtracted from the cold region and be
proportional to the heat flux moving between the regions. See the paper by Ikeshoji and Hafskjold for details of
this idea. Note that thermostatting fixes such as fix nvt, fix langevin, and fix temp/rescale store the cumulative
energy they add/subtract.

Alternatively, as a second method, the fix heat command can used in place of thermostats on each of two regions
to add/subtract specified amounts of energy to both regions. In both cases, the resulting temperatures of the two
regions can be monitored with the "compute temp/region" command and the temperature profile of the
intermediate region can be monitored with the fix ave/spatial and compute ke/atom commands.

The third method is to perform a reverse non-equilibrium MD simulation using the fix thermal/conductivity
command which implements the INEMD algorithm of Muller-Plathe. Kinetic energy is swapped between atoms
in two different layers of the simulation box. This induces a temperature gradient between the two layers which
can be monitored with the fix ave/spatial and compute ke/atom commands. The fix tallies the cumulative energy
transfer that it performs. See the fix thermal/conductivity command for details.

The fourth method is based on the Green-Kubo (GK) formula which relates the ensemble average of the
auto-correlation of the heat flux to kappa. The heat flux can be calculated from the fluctuations of per-atom
potential and kinetic energies and per-atom stress tensor in a steady-state equilibrated simulation. This is in
contrast to the two preceding non-equilibrium methods, where energy flows continuously between hot and cold
regions of the simulation box.

The compute heat/flux command can calculate the needed heat flux and describes how to implement the
Green_Kubo formalism using additional LAMMPS commands, such as the fix ave/correlate command to
calculate the needed auto-correlation. See the doc page for the compute heat/flux command for an example input
script that calculates the thermal conductivity of solid Ar via the GK formalism.

89

6.21 Calculating viscosity

The shear viscosity eta of a fluid can be measured in at least 4 ways using various options in LAMMPS. See the
examples/VISCOSITY directory for scripts that implement the 4 methods discussed here for a simple
Lennard-Jones fluid model. Also, see this section of the manual for an analogous discussion for thermal
conductivity.

Eta is a measure of the propensity of a fluid to transmit momentum in a direction perpendicular to the direction of
velocity or momentum flow. Alternatively it is the resistance the fluid has to being sheared. It is given by

J = -eta grad(Vstream)

where J is the momentum flux in units of momentum per area per time. and grad(Vstream) is the spatial gradient
of the velocity of the fluid moving in another direction, normal to the area through which the momentum flows.
Viscosity thus has units of pressure-time.

The first method is to perform a non-equlibrium MD (NEMD) simulation by shearing the simulation box via the
fix deform command, and using the fix nvt/sllod command to thermostat the fluid via the SLLOD equations of
motion. Alternatively, as a second method, one or more moving walls can be used to shear the fluid in between
them, again with some kind of thermostat that modifies only the thermal (non-shearing) components of velocity to
prevent the fluid from heating up.

In both cases, the velocity profile setup in the fluid by this procedure can be monitored by the fix ave/spatial
command, which determines grad(Vstream) in the equation above. E.g. the derivative in the y-direction of the Vx
component of fluid motion or grad(Vstream) = dVx/dy. The Pxy off-diagonal component of the pressure or stress
tensor, as calculated by the compute pressure command, can also be monitored, which is the J term in the
equation above. See this section of the manual for details on NEMD simulations.

The third method is to perform a reverse non-equilibrium MD simulation using the fix viscosity command which
implements the INEMD algorithm of Muller-Plathe. Momentum in one dimension is swapped between atoms in
two different layers of the simulation box in a different dimension. This induces a velocity gradient which can be
monitored with the fix ave/spatial command. The fix tallies the cummulative momentum transfer that it performs.
See the fix viscosity command for details.

The fourth method is based on the Green-Kubo (GK) formula which relates the ensemble average of the
auto-correlation of the stress/pressure tensor to eta. This can be done in a steady-state equilibrated simulation
which is in contrast to the two preceding non-equilibrium methods, where momentum flows continuously through

the simulation box.

Here is an example input script that calculates the viscosity of liquid Ar via the GK formalism:

Sample LAMMPS input script for viscosity of liquid Ar

units real

variable T equal 86.4956

variable V equal vol

variable dt equal 4.0

variable p equal 400 # correlation length
variable s equal 5 # sample interval
variable d equal $p*$s # dump interval

convert from LAMMPS real units to SI

variable kB equal 1.3806504e-23 # [J/K/ Boltzmann
variable atm2Pa equal 101325.0

90

variable A2m equal 1.0e-10
variable fs2s equal 1.0e-15
variable convert equal ${atm2Pa}*${atm2Pa}*S${fs2s}*${A2m}*S${A2m}*S${A2m}

setup problem

dimension 3

boundary pPppPpP

lattice fcc 5.376 orient x 1 0 0 orient vy 0 1 0 orient z 0 0 1
region box block 0 4 0 4 0 4

create_box 1 box

create_atoms 1 box

mass 1 39.9438

pair_style 1j/cut 13.0
pair_coeff * * (0.2381 3.405
timestep ${dt}

thermo $d

equilibration and thermalization

velocity all create $T 102486 mom yes rot yes dist gaussian
fix NVT all nvt temp $T $T 10 drag 0.2
run 8000

viscosity calculation, switch to NVE if desired

#unfix NVT
#fix NVE all nve

reset_timestep 0

variable pxy equal pxy
variable pxz equal pxz
variable pyz equal pyz
fix SS all ave/correlate $s S$Sp $d &

V_pxy V_pxz v_pyz type auto file SO0St.dat ave running
variable scale equal S${convert}/ (${kB}*ST)*SV*S$s*s{dt}
variable v1ll equal trap(f_SS[3])*${scale}
variable v22 equal trap(f_SS[4])*${scale}
variable v33 equal trap(f_SS[5])*${scale}

thermo_style custom step temp press v_pxy Vv_pxz v_pyz v_vll v_v22 v_v33
run 100000

variable v equal (v_vll+v_v22+v_v33)/3.0
variable ndens equal count (all)/vol
print "average viscosity: $v [Pa.s/ @ ST K, ${ndens} /A"3"

(Berendsen) Berendsen, Grigera, Straatsma, J Phys Chem, 91, 6269-6271 (1987).

(Cornell) Cornell, Cieplak, Bayly, Gould, Merz, Ferguson, Spellmeyer, Fox, Caldwell, Kollman, JACS 117,
5179-5197 (1995).

(Horn) Horn, Swope, Pitera, Madura, Dick, Hura, and Head-Gordon, J] Chem Phys, 120, 9665 (2004).

(Ikeshoji) Ikeshoji and Hafskjold, Molecular Physics, 81, 251-261 (1994).

91

(MacKerell) MacKerell, Bashford, Bellott, Dunbrack, Evanseck, Field, Fischer, Gao, Guo, Ha, et al, J Phys
Chem, 102, 3586 (1998).

(Mayo) Mayo, Olfason, Goddard III, J Phys Chem, 94, 8897-8909 (1990).

(Jorgensen) Jorgensen, Chandrasekhar, Madura, Impey, Klein, J Chem Phys, 79, 926 (1983).

(Price) Price and Brooks, J Chem Phys, 121, 10096 (2004).

(Shinoda) Shinoda, Shiga, and Mikami, Phys Rev B, 69, 134103 (2004).

92

Previous Section - LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands - Next Section

7. Example problems

The LAMMPS distribution includes an examples sub-directory with several sample problems. Each problem is in
a sub-directory of its own. Most are 2d models so that they run quickly, requiring at most a couple of minutes to
run on a desktop machine. Each problem has an input script (in.*) and produces a log file (log.*) and dump file
(dump.*) when it runs. Some use a data file (data.*) of initial coordinates as additional input. A few sample log
file outputs on different machines and different numbers of processors are included in the directories to compare
your answers to. E.g. a log file like log.crack.foo.P means it ran on P processors of machine "foo".

For examples that use input data files, many of them were produced by Pizza.py or setup tools described in the
Additional Tools section of the LAMMPS documentation and provided with the LAMMPS distribution.

If you uncomment the dump command in the input script, a text dump file will be produced, which can be
animated by various visualization programs. It can also be animated using the xmovie tool described in the
Additional Tools section of the LAMMPS documentation.

If you uncomment the dump image command in the input script, and assuming you have built LAMMPS with a
JPG library, JPG snapshot images will be produced when the simulation runs. They can be quickly post-processed
into a movie using commands described on the dump image doc page.

Animations of many of these examples can be viewed on the Movies section of the LAMMPS WWW Site.

These are the sample problems in the examples sub-directories:

body body particles, 2d system

colloid big colloid particles in a small particle solvent, 2d system
comb models using the COMB potential

crack crack propagation in a 2d solid

dipole point dipolar particles, 2d system

dreiding |methanol via Dreiding FF

eim NaCl using the EIM potential

ellipse ellipsoidal particles in spherical solvent, 2d system

flow Couette and Poiseuille flow in a 2d channel

friction frictional contact of spherical asperities between 2d surfaces
gpu use of the GPU package for GPU acceleration

hugoniostat |Hugoniostat shock dynamics

indent spherical indenter into a 2d solid

kim use of potentials in Knowledge Base for Interatomic Models (KIM)
line line segment particles in 2d rigid bodies

meam MEAM test for SiC and shear (same as shear examples)
melt rapid melt of 3d LJ system

micelle self-assembly of small lipid-like molecules into 2d bilayers
min energy minimization of 2d LJ melt

msst MSST shock dynamics

neb nudged elastic band (NEB) calculation for barrier finding

93

http://lammps.sandia.gov
http://pizza.sandia.gov
http://lammps.sandia.gov/viz.html
http://lammps.sandia.gov

nemd non-equilibrium MD of 2d sheared system

obstacle |flow around two voids in a 2d channel

peptide dynamics of a small solvated peptide chain (5-mer)

peri Peridynamic model of cylinder impacted by indenter

pour pouring of granular particles into a 3d box, then chute flow
prd parallel replica dynamics of vacancy diffusion in bulk Si
reax RDX and TATB models using the ReaxFF

rigid rigid bodies modeled as independent or coupled

shear sideways shear applied to 2d solid, with and without a void
srd stochastic rotation dynamics (SRD) particles as solvent

tad temperature-accelerated dynamics of vacancy diffusion in bulk Si
tri triangular particles in rigid bodies

Here is how you might run and visualize one of the sample problems:

cd indent
cp ../../src/lmp_linux . # copy LAMMPS executable to this dir
Imp_linux <in.indent # run the problem

Running the simulation produces the files dump.indent and log.lammps. You can visualize the dump file as
follows:

../../tools/xmovie/xmovie -scale dump.indent

If you uncomment the dump image line(s) in the input script a series of JPG images will be produced by the run.
These can be viewed individually or turned into a movie or animated by tools like ImageMagick or QuickTime or
various Windows-based tools. See the dump image doc page for more details. E.g. this Imagemagick command
would create a GIF file suitable for viewing in a browser.

)

% convert —-loop 1 *.jpg foo.gif

There is also a COUPLE directory with examples of how to use LAMMPS as a library, either by itself or in
tandem with another code or library. See the COUPLE/README file to get started.

There is also an ELASTIC directory with an example script for computing elastic constants, using a zero
temperature Si example. See the in.elastic file for more info.

There is also a USER directory which contains subdirectories of user-provided examples for user packages. See

the README files in those directories for more info. See the Section_start.html file for more info about user
packages.

94

Previous Section - LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands - Next Section

8. Performance & scalability

LAMMPS performance on several prototypical benchmarks and machines is discussed on the Benchmarks page
of the LAMMPS WWW Site where CPU timings and parallel efficiencies are listed. Here, the benchmarks are
described briefly and some useful rules of thumb about their performance are highlighted.

These are the 5 benchmark problems:

1. LJ = atomic fluid, Lennard-Jones potential with 2.5 sigma cutoff (55 neighbors per atom), NVE
integration

2. Chain = bead-spring polymer melt of 100-mer chains, FENE bonds and LJ pairwise interactions with a
27(1/6) sigma cutoff (5 neighbors per atom), NVE integration

3. EAM = metallic solid, Cu EAM potential with 4.95 Angstrom cutoff (45 neighbors per atom), NVE
integration

4. Chute = granular chute flow, frictional history potential with 1.1 sigma cutoff (7 neighbors per atom),
NVE integration

5. Rhodo = rhodopsin protein in solvated lipid bilayer, CHARMM force field with a 10 Angstrom LJ cutoff
(440 neighbors per atom), particle-particle particle-mesh (PPPM) for long-range Coulombics, NPT
integration

The input files for running the benchmarks are included in the LAMMPS distribution, as are sample output files.
Each of the 5 problems has 32,000 atoms and runs for 100 timesteps. Each can be run as a serial benchmarks (on
one processor) or in parallel. In parallel, each benchmark can be run as a fixed-size or scaled-size problem. For
fixed-size benchmarking, the same 32K atom problem is run on various numbers of processors. For scaled-size
benchmarking, the model size is increased with the number of processors. E.g. on 8 processors, a 256K-atom
problem is run; on 1024 processors, a 32-million atom problem is run, etc.

A useful metric from the benchmarks is the CPU cost per atom per timestep. Since LAMMPS performance scales
roughly linearly with problem size and timesteps, the run time of any problem using the same model (atom style,
force field, cutoff, etc) can then be estimated. For example, on a 1.7 GHz Pentium desktop machine (Intel icc
compiler under Red Hat Linux), the CPU run-time in seconds/atom/timestep for the 5 problems is

Problem:| LJ Chain | EAM | Chute |Rhodopsin
CPU/atom/step:[4.55E-6 [2.18E-6 [9.38E-6 |2.18E-6 | 1.11E-4

Ratioto LJ:[1.0 0.48 2.06 0.48 24.5

The ratios mean that if the atomic LJ system has a normalized cost of 1.0, the bead-spring chains and granular
systems run 2x faster, while the EAM metal and solvated protein models run 2x and 25x slower respectively. The
bulk of these cost differences is due to the expense of computing a particular pairwise force field for a given
number of neighbors per atom.

Performance on a parallel machine can also be predicted from the one-processor timings if the parallel efficiency
can be estimated. The communication bandwidth and latency of a particular parallel machine affects the
efficiency. On most machines LAMMPS will give fixed-size parallel efficiencies on these benchmarks above
50% so long as the atoms/processor count is a few 100 or greater - i.e. on 64 to 128 processors. Likewise,
scaled-size parallel efficiencies will typically be 80% or greater up to very large processor counts. The benchmark
data on the LAMMPS WWW Site gives specific examples on some different machines, including a run of 3/4 of a
billion LJ atoms on 1500 processors that ran at 85% parallel efficiency.

95

http://lammps.sandia.gov
http://lammps.sandia.gov
http://lammps.sandia.gov

Previous Section - LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands - Next Section

9. Additional tools

LAMMPS is designed to be a computational kernel for performing molecular dynamics computations. Additional
pre- and post-processing steps are often necessary to setup and analyze a simulation. A few additional tools are
provided with the LAMMPS distribution and are described in this section.

Our group has also written and released a separate toolkit called Pizza.py which provides tools for doing setup,
analysis, plotting, and visualization for LAMMPS simulations. Pizza.py is written in Python and is available for
download from the Pizza.py WWW site.

Note that many users write their own setup or analysis tools or use other existing codes and convert their output to
a LAMMPS input format or vice versa. The tools listed here are included in the LAMMPS distribution as
examples of auxiliary tools. Some of them are not actively supported by Sandia, as they were contributed by
LAMMPS users. If you have problems using them, we can direct you to the authors.

The source code for each of these codes is in the tools sub-directory of the LAMMPS distribution. There is a
Makefile (which you may need to edit for your platform) which will build several of the tools which reside in that
directory. Some of them are larger packages in their own sub-directories with their own Makefiles.

e amber2lmp

® binary2txt

e ch2Imp

¢ chain

® createatoms
¢ data2xmovie
¢ eam database
® cam generate
o eff

® emacs

® ipp

e kate

® Imp2arc

® Imp2cfg

¢ Imp2vmd

® matlab

® micelle2d

* moltemplate
* msi2lmp

¢ phonon

¢ polymer bonding
¢ pymol_asphere
¢ python

® reax

e restart2data
® vim

® xmgrace

® Xmovie

96

http://lammps.sandia.gov
http://www.sandia.gov/~sjplimp/pizza.html
http://www.python.org
http://www.sandia.gov/~sjplimp/pizza.html

amber2imp tool

The amber2lmp sub-directory contains two Python scripts for converting files back-and-forth between the
AMBER MD code and LAMMPS. See the README file in amber2Imp for more information.

These tools were written by Keir Novik while he was at Queen Mary University of London. Keir is no longer
there and cannot support these tools which are out-of-date with respect to the current LAMMPS version (and
maybe with respect to AMBER as well). Since we don't use these tools at Sandia, you'll need to experiment with
them and make necessary modifications yourself.

binary2txt tool

The file binary2txt.cpp converts one or more binary LAMMPS dump file into ASCII text files. The syntax for
running the tool is

binary2txt filel file2 ...

which creates filel.txt, file2.txt, etc. This tool must be compiled on a platform that can read the binary file created
by a LAMMPS run, since binary files are not compatible across all platforms.

ch2Iimp tool

The ch2lmp sub-directory contains tools for converting files back-and-forth between the CHARMM MD code
and LAMMPS.

They are intended to make it easy to use CHARMM as a builder and as a post-processor for LAMMPS. Using
charmm2lammps.pl, you can convert an ensemble built in CHARMM into its LAMMPS equivalent. Using
lammps2pdb.pl you can convert LAMMPS atom dumps into pdb files.

See the README file in the ch2lmp sub-directory for more information.

These tools were created by Pieter in't Veld (pjintve at sandia.gov) and Paul Crozier (pscrozi at sandia.gov) at
Sandia.

chain tool

The file chain.f creates a LAMMPS data file containing bead-spring polymer chains and/or monomer solvent
atoms. It uses a text file containing chain definition parameters as an input. The created chains and solvent atoms
can strongly overlap, so LAMMPS needs to run the system initially with a "soft" pair potential to un-overlap it.
The syntax for running the tool is

chain <def.chain > data.file

See the def.chain or def.chain.ab files in the tools directory for examples of definition files. This tool was used to
create the system for the chain benchmark.

createatoms tool
The tools/createatoms directory contains a Fortran program called create Atoms.f which can generate a variety of

interesting crystal structures and geometries and output the resulting list of atom coordinates in LAMMPS or
other formats.

97

See the included Manual.pdf for details.

The tool is authored by Xiaowang Zhou (Sandia), xzhou at sandia.gov.

data2xmovie tool

The file data2xmovie.c converts a LAMMPS data file into a snapshot suitable for visualizing with the xmovie
tool, as if it had been output with a dump command from LAMMPS itself. The syntax for running the tool is

data2xmovie options <infile > outfile

See the top of the data2xmovie.c file for a discussion of the options.

eam database tool

The tools/eam_database directory contains a Fortran program that will generate EAM alloy setf] potential files for
any combination of 16 elements: Cu, Ag, Au, Ni, Pd, Pt, Al, Pb, Fe, Mo, Ta, W, Mg, Co, Ti, Zr. The files can
then be used with the pair_style eam/alloy command.

The tool is authored by Xiaowang Zhou (Sandia), xzhou at sandia.gov, and is based on his paper:

X. W. Zhou, R. A. Johnson, and H. N. G. Wadley, Phys. Rev. B, 69, 144113 (2004).

eam generate tool
The tools/eam_generate directory contains several one-file C programs that convert an analytic formula into a
tabulated embedded atom method (EAM) setfl potential file. The potentials they produce are in the potentials

directory, and can be used with the pair_style eam/alloy command.

The source files and potentials were provided by Gerolf Ziegenhain (gerolf at ziegenhain.com).

eff tool

The tools/eff directory contains various scripts for generating structures and post-processing output for
simulations using the electron force field (eFF).

These tools were provided by Andres Jaramillo-Botero at CalTech (ajaramil at wag.caltech.edu).

emacs tool

The tools/emacs directory contains a Lips add-on file for Emacs that enables a lammps-mode for editing of input
scripts when using Emacs, with various highlighting options setup.

These tools were provided by Aidan Thompson at Sandia (athomps at sandia.gov).

ipp tool

The tools/ipp directory contains a Perl script ipp which can be used to facilitate the creation of a complicated file
(say, a lammps input script or tools/createatoms input file) using a template file.

ipp was created and is maintained by Reese Jones (Sandia), rjones at sandia.gov.

98

See two examples in the tools/ipp directory. One of them is for the tools/createatoms tool's input file.

kate tool

The file in the tools/kate directory is an add-on to the Kate editor in the KDE suite that allow syntax highlighting
of LAMMPS input scripts. See the README.txt file for details.

The file was provided by Alessandro Luigi Sellerio (alessandro.sellerio at ieni.cnr.it).

Imp2arc tool

The Imp2arc sub-directory contains a tool for converting LAMMPS output files to the format for Accelrys' Insight
MD code (formerly MSI/Biosym and its Discover MD code). See the README file for more information.

This tool was written by John Carpenter (Cray), Michael Peachey (Cray), and Steve Lustig (Dupont). John is now
at the Mayo Clinic (jec at mayo.edu), but still fields questions about the tool.

This tool was updated for the current LAMMPS C++ version by Jeff Greathouse at Sandia (jagreat at sandia.gov).

Imp2cfg tool

The Imp2cfg sub-directory contains a tool for converting LAMMPS output files into a series of *.cfg files which
can be read into the AtomEye visualizer. See the README file for more information.

This tool was written by Ara Kooser at Sandia (askoose at sandia.gov).

Imp2vmd tool

The Imp2vmd sub-directory contains a README.txt file that describes details of scripts and plugin support
within the VMD package for visualizing LAMMPS dump files.

The VMD plugins and other supporting scripts were written by Axel Kohlmeyer (akohlmey at
cmm.chem.upenn.edu) at U Penn.

matlab tool

The matlab sub-directory contains several MATLAB scripts for post-processing LAMMPS output. The scripts
include readers for log and dump files, a reader for EAM potential files, and a converter that reads LAMMPS
dump files and produces CFG files that can be visualized with the AtomEye visualizer.

See the README.pdf file for more information.

These scripts were written by Arun Subramaniyan at Purdue Univ (asubrama at purdue.edu).

micelle2d tool

The file micelle2d.f creates a LAMMPS data file containing short lipid chains in a monomer solution. It uses a
text file containing lipid definition parameters as an input. The created molecules and solvent atoms can strongly
overlap, so LAMMPS needs to run the system initially with a "soft" pair potential to un-overlap it. The syntax for
running the tool is

micelle2d <def.micelle2d > data.file

99

http://mt.seas.upenn.edu/Archive/Graphics/A
http://www.ks.uiuc.edu/Research/vmd
http://www.mathworks.com
http://mt.seas.upenn.edu/Archive/Graphics/A

See the def.micelle2d file in the tools directory for an example of a definition file. This tool was used to create the
system for the micelle example.

moltemplate tool

The moltemplate sub-directory contains a Python-based tool for building molecular systems based on a text-file
description, and creating LAMMPS data files that encode their molecular topology as lists of bonds, angles,
dihedrals, etc. See the README.TXT file for more information.

This tool was written by Andrew Jewett (jewett.aij at gmail.com), who supports it. It has its own WWW page at
http://moltemplate.org.

msi2lmp tool

The msi2lmp sub-directory contains a tool for creating LAMMPS input data files from Accelrys' Insight MD code
(formerly MSI/Biosym and its Discover MD code). See the README file for more information.

This tool was written by John Carpenter (Cray), Michael Peachey (Cray), and Steve Lustig (Dupont). John is now
at the Mayo Clinic (jec at mayo.edu), but still fields questions about the tool.

This tool may be out-of-date with respect to the current LAMMPS and Insight versions. Since we don't use it at
Sandia, you'll need to experiment with it yourself.

phonon tool

The phonon sub-directory contains a post-processing tool useful for analyzing the output of the fix phonon
command in the USER-PHONON package.

See the README file for instruction on building the tool and what library it needs. And see the
examples/USER/phonon directory for example problems that can be post-processed with this tool.

This tool was written by Ling-Ti Kong at Shanghai Jiao Tong University.

polymer bonding tool

The polybond sub-directory contains a Python-based tool useful for performing "programmable polymer
bonding". The Python file Impsdata.py provides a "Lmpsdata" class with various methods which can be invoked
by a user-written Python script to create data files with complex bonding topologies.

See the Manual.pdf for details and example scripts.

This tool was written by Zachary Kraus at Georgia Tech.

pymol_asphere tool

The pymol_asphere sub-directory contains a tool for converting a LAMMPS dump file that contains orientation
info for ellipsoidal particles into an input file for the PyMol visualization package.

Specifically, the tool triangulates the ellipsoids so they can be viewed as true ellipsoidal particles within PyMol.
See the README and examples directory within pymol_asphere for more information.

This tool was written by Mike Brown at Sandia.

100

http://moltemplate.org
http://pymol.sourceforge.net

python tool

The python sub-directory contains several Python scripts that perform common LAMMPS post-processing tasks,
such as:

e extract thermodynamic info from a log file as columns of numbers

¢ plot two columns of thermodynamic info from a log file using GnuPlot

¢ sort the snapshots in a dump file by atom ID

¢ convert multiple NEB dump files into one dump file for viz

¢ convert dump files into XYZ, CFG, or PDB format for viz by other packages

These are simple scripts built on Pizza.py modules. See the README for more info on Pizza.py and how to use
these scripts.

reax tool

The reax sub-directory contains stand-alond codes that can post-process the output of the fix reax/bonds command
from a LAMMPS simulation using ReaxFF. See the README.txt file for more info.

These tools were written by Aidan Thompson at Sandia.

restart2data tool

IMPORTANT NOTE: This tool is now obsolete and is not included in the current LAMMPS distribution. This is
becaues there is now a write_data command, which can create a data file from within an input script. Running
LAMMPS with the "-r" command-line switch as follows:

Imp_g++ -r restartfile datafile

is the same as running a 2-line input script:

read_restart restartfile write_data datafile

which will produce the same data file that the restart2data tool used to create. The following information is
included in case you have an older version of LAMMPS which still includes the restart2data tool.

The file restart2data.cpp converts a binary LAMMPS restart file into an ASCII data file. The syntax for running
the tool is

restart2data restart-file data-file (input-file)

Input-file is optional and if specified will contain LAMMPS input commands for the masses and force field
parameters, instead of putting those in the data-file. Only a few force field styles currently support this option.

This tool must be compiled on a platform that can read the binary file created by a LAMMPS run, since binary
files are not compatible across all platforms.

Note that a text data file has less precision than a binary restart file. Hence, continuing a run from a converted data
file will typically not conform as closely to a previous run as will restarting from a binary restart file.

101

http://www.sandia.gov/~sjplimp/pizza.html

If a "%" appears in the specified restart-file, the tool expects a set of multiple files to exist. See the restart and
write_restart commands for info on how such sets of files are written by LAMMPS, and how the files are named.

vim tool

The files in the tools/vim directory are add-ons to the VIM editor that allow easier editing of LAMMPS input
scripts. See the README.txt file for details.

These files were provided by Gerolf Ziegenhain (gerolf at ziegenhain.com)

xmgrace tool

The files in the tools/xmgrace directory can be used to plot the thermodynamic data in LAMMPS log files via the
xmgrace plotting package. There are several tools in the directory that can be used in post-processing mode. The
lammpsplot.cpp file can be compiled and used to create plots from the current state of a running LAMMPS
simulation.

See the README file for details.

These files were provided by Vikas Varshney (vv0210 at gmail.com)

xmovie tool

The xmovie tool is an X-based visualization package that can read LAMMPS dump files and animate them. It is
in its own sub-directory with the tools directory. You may need to modify its Makefile so that it can find the
appropriate X libraries to link against.

The syntax for running xmovie is

xmovie options dump.filel dump.file2 ...

If you just type "xmovie" you will see a list of options. Note that by default, LAMMPS dump files are in scaled
coordinates, so you typically need to use the -scale option with xmovie. When xmovie runs it opens a
visualization window and a control window. The control options are straightforward to use.

Xmovie was mostly written by Mike Uttormark (U Wisconsin) while he spent a summer at Sandia. It displays 2d
projections of a 3d domain. While simple in design, it is an amazingly fast program that can render large numbers
of atoms very quickly. It's a useful tool for debugging LAMMPS input and output and making sure your
simulation is doing what you think it should. The animations on the Examples page of the LAMMPS WWW site
were created with xmovie.

I've lost contact with Mike, so I hope he's comfortable with us distributing his great tool!

102

http://lammps.sandia.gov

Previous Section - LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands - Next Section

10. Modifying & extending LAMMPS

This section describes how to customize LAMMPS by modifying and extending its source code.

10.1 Atom styles

10.2 Bond, angle, dihedral, improper potentials

10.3 Compute styles

10.4 Dump styles

10.5 Dump custom output options

10.6 Fix styles which include integrators, temperature and pressure control, force constraints, boundary
conditions, diagnostic output, etc

10.7 Input script commands

10.8 Kspace computations

10.9 Minimization styles

10.10 Pairwise potentials

10.11 Region styles

10.12 Body styles

10.13 Thermodynamic output options

10.14 Variable options

10.15 Submitting new features for inclusion in LAMMPS

LAMMPS is designed in a modular fashion so as to be easy to modify and extend with new functionality. In fact,
about 75% of its source code is files added in this fashion.

In this section, changes and additions users can make are listed along with minimal instructions. If you add a new
feature to LAMMPS and think it will be of interest to general users, we encourage you to submit it to the
developers for inclusion in the released version of LAMMPS. Information about how to do this is provided below.

The best way to add a new feature is to find a similar feature in LAMMPS and look at the corresponding source
and header files to figure out what it does. You will need some knowledge of C++ to be able to understand the
hi-level structure of LAMMPS and its class organization, but functions (class methods) that do actual
computations are written in vanilla C-style code and operate on simple C-style data structures (vectors and
arrays).

Most of the new features described in this section require you to write a new C++ derived class (except for
exceptions described below, where you can make small edits to existing files). Creating a new class requires 2
files, a source code file (*.cpp) and a header file (*.h). The derived class must provide certain methods to work as
a new option. Depending on how different your new feature is compared to existing features, you can either
derive from the base class itself, or from a derived class that already exists. Enabling LAMMPS to invoke the new
class is as simple as putting the two source files in the src dir and re-building LAMMPS.

The advantage of C++ and its object-orientation is that all the code and variables needed to define the new feature
are in the 2 files you write, and thus shouldn't make the rest of LAMMPS more complex or cause side-effect bugs.

Here is a concrete example. Suppose you write 2 files pair_foo.cpp and pair_foo.h that define a new class PairFoo

that computes pairwise potentials described in the classic 1997 paper by Foo, et al. If you wish to invoke those
potentials in a LAMMPS input script with a command like

pair_style foo 0.1 3.5

103

http://lammps.sandia.gov

then your pair_foo.h file should be structured as follows:

#ifdef PAIR_CLASS
PairStyle (foo,PairFoo)
#else

(class definition for PairFoo)
#endif

where "foo" is the style keyword in the pair_style command, and PairFoo is the class name defined in your
pair_foo.cpp and pair_foo.h files.

When you re-build LAMMPS, your new pairwise potential becomes part of the executable and can be invoked
with a pair_style command like the example above. Arguments like 0.1 and 3.5 can be defined and processed by
your new class.

As illustrated by this pairwise example, many kinds of options are referred to in the LAMMPS documentation as
the "style" of a particular command.

The instructions below give the header file for the base class that these styles are derived from. Public variables in
that file are ones used and set by the derived classes which are also used by the base class. Sometimes they are
also used by the rest of LAMMPS. Virtual functions in the base class header file which are set = 0 are ones you
must define in your new derived class to give it the functionality LAMMPS expects. Virtual functions that are not
set to 0 are functions you can optionally define.

Additionally, new output options can be added directly to the thermo.cpp, dump_custom.cpp, and variable.cpp
files as explained below.

Here are additional guidelines for modifying LAMMPS and adding new functionality:

¢ Think about whether what you want to do would be better as a pre- or post-processing step. Many
computations are more easily and more quickly done that way.

¢ Don't do anything within the timestepping of a run that isn't parallel. E.g. don't accumulate a bunch of
data on a single processor and analyze it. You run the risk of seriously degrading the parallel efficiency.

¢ [f your new feature reads arguments or writes output, make sure you follow the unit conventions
discussed by the units command.

¢ [f you add something you think is truly useful and doesn't impact LAMMPS performance when it isn't
used, send an email to the developers. We might be interested in adding it to the LAMMPS distribution.
See further details on this at the bottom of this page.

10.1 Atom styles

Classes that define an atom style are derived from the AtomVec class and managed by the Atom class. The atom
style determines what attributes are associated with an atom. A new atom style can be created if one of the
existing atom styles does not define all the attributes you need to store and communicate with atoms.

Atom_vec_atomic.cpp is a simple example of an atom style.

Here is a brief description of methods you define in your new derived class. See atom_vec.h for details.

104

http://lammps.sandia.gov/authors.html

init one time setup (optional)

grow re-allocate atom arrays to longer lengths (required)

grow_reset make array pointers in Atom and AtomVec classes consistent (required)
copy copy info for one atom to another atom's array locations (required)
pack_comm store an atom's info in a buffer communicated every timestep (required)
pack_comm_vel add velocity info to communication buffer (required)

pack_comm_hybrid store extra info unique to this atom style (optional)

unpack_comm retrieve an atom's info from the buffer (required)

unpack_comm_vel also retrieve velocity info (required)

unpack_comm_hybrid |retreive extra info unique to this atom style (optional)

pack_reverse store an atom's info in a buffer communicating partial forces (required)

pack_reverse_hybrid |[store extra info unique to this atom style (optional)

unpack_reverse retrieve an atom's info from the buffer (required)

unpack_reverse_hybrid [retreive extra info unique to this atom style (optional)

pack_border store an atom's info in a buffer communicated on neighbor re-builds (required)
pack_border_vel add velocity info to buffer (required)

pack_border_hybrid |store extra info unique to this atom style (optional)

unpack_border retrieve an atom's info from the buffer (required)

unpack_border_vel also retrieve velocity info (required)

unpack_border_hybrid |retreive extra info unique to this atom style (optional)

pack_exchange store all an atom's info to migrate to another processor (required)
unpack_exchange retrieve an atom's info from the buffer (required)

size_restart number of restart quantities associated with proc's atoms (required)
pack_restart pack atom quantities into a buffer (required)

unpack_restart unpack atom quantities from a buffer (required)

create_atom create an individual atom of this style (required)

data_atom parse an atom line from the data file (required)
data_atom_hybrid parse additional atom info unique to this atom style (optional)
data_vel parse one line of velocity information from data file (optional)
data_vel_hybrid parse additional velocity data unique to this atom style (optional)
memory_usage tally memory allocated by atom arrays (required)

The constructor of the derived class sets values for several variables that you must set when defining a new atom
style, which are documented in atom_vec.h. New atom arrays are defined in atom.cpp. Search for the word
"customize" and you will find locations you will need to modify.

IMPORTANT NOTE: It is possible to add some attributes, such as a molecule ID, to atom styles that do not have
them via the fix property/atom command. This command also allows new custom attributes consisting of extra
integer or floating-point values to be added to atoms. See the fix property/atom doc page for examples of cases
where this is useful and details on how to initialize, access, and output the custom values.

New pair styles, fixes, or computes can be added to LAMMPS, as discussed below. The code for these classes can
use the per-atom properties defined by fix property/atom. The Atom class has a find_custom() method that is

useful in this context:

int index = atom->find_custom(char *name, int &flag);

105

The "name" of a custom attribute, as specified in the fix property/atom command, is checked to verify that it
exists and its index is returned. The method also sets flag = 0/1 depending on whether it is an integer or
floating-point attribute. The vector of values associated with the attribute can then be accessed using the returned
index as

int *ivector = atom->ivector[index];
double *dvector = atom->dvector[index];

Ivector or dvector are vectors of length Nlocal = # of owned atoms, which store the attributes of individual atoms.

10.2 Bond, angle, dihedral, improper potentials

Classes that compute molecular interactions are derived from the Bond, Angle, Dihedral, and Improper classes.
New styles can be created to add new potentials to LAMMPS.

Bond_harmonic.cpp is the simplest example of a bond style. Ditto for the harmonic forms of the angle, dihedral,
and improper style commands.

Here is a brief description of common methods you define in your new derived class. See bond.h, angle.h,
dihedral.h, and improper.h for details and specific additional methods.

init check if all coefficients are set, calls init_style (optional)
init_style check if style specific conditions are met (optional)
compute compute the molecular interactions (required)

settings apply global settings for all types (optional)

coeff set coefficients for one type (required)

equilibrium_distance [length of bond, used by SHAKE (required, bond only)

equilibrium_angle [opening of angle, used by SHAKE (required, angle only)

write & read_restart |writes/reads coeffs to restart files (required)

single force and energy of a single bond or angle (required, bond or angle only)

memory_usage tally memory allocated by the style (optional)

10.3 Compute styles
Classes that compute scalar and vector quantities like temperature and the pressure tensor, as well as classes that
compute per-atom quantities like kinetic energy and the centro-symmetry parameter are derived from the

Compute class. New styles can be created to add new calculations to LAMMPS.

Compute_temp.cpp is a simple example of computing a scalar temperature. Compute_ke_atom.cpp is a simple
example of computing per-atom kinetic energy.

Here is a brief description of methods you define in your new derived class. See compute.h for details.

init perform one time setup (required)

init_list neighbor list setup, if needed (optional)

compute_scalar |compute a scalar quantity (optional)

compute_vector |compute a vector of quantities (optional)

106

compute_peratom [compute one or more quantities per atom (optional)

compute_local |compute one or more quantities per processor (optional)

pack_comm pack a buffer with items to communicate (optional)

unpack_comm |unpack the buffer (optional)

pack_reverse pack a buffer with items to reverse communicate (optional)

unpack_reverse [unpack the buffer (optional)

remove_bias remove velocity bias from one atom (optional)

remove_bias_all [remove velocity bias from all atoms in group (optional)

restore_bias restore velocity bias for one atom after remove_bias (optional)

restore_bias_all [same as before, but for all atoms in group (optional)

memory_usage [tally memory usage (optional)

10.4 Dump styles

10.5 Dump custom output options

Classes that dump per-atom info to files are derived from the Dump class. To dump new quantities or in a new
format, a new derived dump class can be added, but it is typically simpler to modify the DumpCustom class
contained in the dump_custom.cpp file.

Dump_atom.cpp is a simple example of a derived dump class.

Here is a brief description of methods you define in your new derived class. See dump.h for details.

write_header |write the header section of a snapshot of atoms

count count the number of lines a processor will output

pack pack a proc's output data into a buffer

write_data |write a proc's data to a file
See the dump command and its custom style for a list of keywords for atom information that can already be
dumped by DumpCustom. It includes options to dump per-atom info from Compute classes, so adding a new
derived Compute class is one way to calculate new quantities to dump.

Alternatively, you can add new keywords to the dump custom command. Search for the word "customize" in
dump_custom.cpp to see the half-dozen or so locations where code will need to be added.

10.6 Fix styles

In LAMMPS, a "fix" is any operation that is computed during timestepping that alters some property of the
system. Essentially everything that happens during a simulation besides force computation, neighbor list
construction, and output, is a "fix". This includes time integration (update of coordinates and velocities), force
constraints or boundary conditions (SHAKE or walls), and diagnostics (compute a diffusion coefficient). New
styles can be created to add new options to LAMMPS.

Fix_setforce.cpp is a simple example of setting forces on atoms to prescribed values. There are dozens of fix
options already in LAMMPS; choose one as a template that is similar to what you want to implement.

107

Here is a brief description of methods you can define in your new derived class. See fix.h for details.

setmask

determines when the fix is called during the timestep (required)

init

initialization before a run (optional)

setup_pre_exchange

called before atom exchange in setup (optional)

setup_pre_force

called before force computation in setup (optional)

setup

called immediately before the 1st timestep and after forces are computed (optional)

min_setup_pre_force

like setup_pre_force, but for minimizations instead of MD runs (optional)

min_setup

like setup, but for minimizations instead of MD runs (optional)

initial_integrate

called at very beginning of each timestep (optional)

pre_exchange

called before atom exchange on re-neighboring steps (optional)

pre_neighbor

called before neighbor list build (optional)

pre_force

called before pair & molecular forces are computed (optional)

post_force

called after pair & molecular forces are computed and communicated (optional)

final_integrate

called at end of each timestep (optional)

end_of_step

called at very end of timestep (optional)

write_restart

dumps fix info to restart file (optional)

restart

uses info from restart file to re-initialize the fix (optional)

grow_arrays

allocate memory for atom-based arrays used by fix (optional)

copy_arrays

copy atom info when an atom migrates to a new processor (optional)

pack_exchange

store atom's data in a buffer (optional)

unpack_exchange

retrieve atom's data from a buffer (optional)

pack_restart

store atom's data for writing to restart file (optional)

unpack_restart

retrieve atom's data from a restart file buffer (optional)

size_restart

size of atom's data (optional)

maxsize_restart

max size of atom's data (optional)

setup_pre_force_respa

same as setup_pre_force, but for rRESPA (optional)

initial_integrate_respa

same as initial_integrate, but for rRESPA (optional)

post_integrate_respa

called after the first half integration step is done in rRESPA (optional)

pre_force_respa

same as pre_force, but for rRESPA (optional)

post_force_respa

same as post_force, but for rRESPA (optional)

final_integrate_respa

same as final_integrate, but for rRESPA (optional)

min_pre_force

called after pair & molecular forces are computed in minimizer (optional)

min_post_force

called after pair & molecular forces are computed and communicated in minmizer
(optional)

min_store

store extra data for linesearch based minimization on a LIFO stack (optional)

min_pushstore

push the minimization LIFO stack one element down (optional)

min_popstore

pop the minimization LIFO stack one element up (optional)

min_clearstore

clear minimization LIFO stack (optional)

min_step reset or move forward on line search minimization (optional)
min_dof report number of degrees of freedom added by this fix in minimization (optional)
max_alpha report maximum allowed step size during linesearch minimization (optional)

pack_comm

pack a buffer to communicate a per-atom quantity (optional)

108

unpack_comm unpack a buffer to communicate a per-atom quantity (optional)
pack_reverse_comm |pack a buffer to reverse communicate a per-atom quantity (optional)
unpack_reverse_comm [unpack a buffer to reverse communicate a per-atom quantity (optional)

dof report number of degrees of freedom removed by this fix during MD (optional)
compute_scalar return a global scalar property that the fix computes (optional)
compute_vector return a component of a vector property that the fix computes (optional)
compute_array return a component of an array property that the fix computes (optional)
deform called when the box size is changed (optional)

reset_target called when a change of the target temperature is requested during a run (optional)
reset_dt is called when a change of the time step is requested during a run (optional)
modify_param called when a fix_modify request is executed (optional)

memory_usage report memory used by fix (optional)

thermo compute quantities for thermodynamic output (optional)

Typically, only a small fraction of these methods are defined for a particular fix. Setmask is mandatory, as it
determines when the fix will be invoked during the timestep. Fixes that perform time integration (nve, nvt, npt)
implement initial_integrate() and final_integrate() to perform velocity Verlet updates. Fixes that constrain forces
implement post_force().

Fixes that perform diagnostics typically implement end_of_step(). For an end_of_step fix, one of your fix
arguments must be the variable "nevery" which is used to determine when to call the fix and you must set this
variable in the constructor of your fix. By convention, this is the first argument the fix defines (after the ID,
group-ID, style).

If the fix needs to store information for each atom that persists from timestep to timestep, it can manage that
memory and migrate the info with the atoms as they move from processors to processor by implementing the
grow_arrays, copy_arrays, pack_exchange, and unpack_exchange methods. Similarly, the pack_restart and
unpack_restart methods can be implemented to store information about the fix in restart files. If you wish an
integrator or force constraint fix to work with rRESPA (see the run_style command), the initial_integrate,
post_force_integrate, and final_integrate_respa methods can be implemented. The thermo method enables a fix to
contribute values to thermodynamic output, as printed quantities and/or to be summed to the potential energy of
the system.

10.7 Input script commands

New commands can be added to LAMMPS input scripts by adding new classes that have a "command" method.
For example, the create_atoms, read_data, velocity, and run commands are all implemented in this fashion. When
such a command is encountered in the LAMMPS input script, LAMMPS simply creates a class with the
corresponding name, invokes the "command" method of the class, and passes it the arguments from the input
script. The command method can perform whatever operations it wishes on LAMMPS data structures.

The single method your new class must define is as follows:

command |operations performed by the new command
Of course, the new class can define other methods and variables as needed.

109

10.8 Kspace computations

Classes that compute long-range Coulombic interactions via K-space representations (Ewald, PPPM) are derived

from the KSpace class. New styles can be created to add new K-space options to LAMMPS.
Ewald.cpp is an example of computing K-space interactions.

Here is a brief description of methods you define in your new derived class. See kspace.h for details.

init initialize the calculation before a run

setup computation before the 1st timestep of a run
compute every-timestep computation

memory_usage [tally of memory usage

10.9 Minimization styles

Classes that perform energy minimization derived from the Min class. New styles can be created to add new
minimization algorithms to LAMMPS.

Min_cg.cpp is an example of conjugate gradient minimization.

Here is a brief description of methods you define in your new derived class. See min.h for details.

nit initialize the minimization before a run

run perform the minimization

memory_usage [tally of memory usage

10.10 Pairwise potentials
Classes that compute pairwise interactions are derived from the Pair class. In LAMMPS, pairwise calculation
include manybody potentials such as EAM or Tersoff where particles interact without a static bond topology.

New styles can be created to add new pair potentials to LAMMPS.

Pair_lj_cut.cpp is a simple example of a Pair class, though it includes some optional methods to enable its use
with rRESPA.

Here is a brief description of the class methods in pair.h:

compute workhorse routine that computes pairwise interactions

settings reads the input script line with arguments you define

coeff set coefficients for one i,j type pair

init_one perform initialization for one i,j type pair

init_style initialization specific to this pair style

write & read_restart write/read i,j pair coeffs to restart files

write & read_restart_settings |write/read global settings to restart files

single force and energy of a single pairwise interaction between 2 atoms

110

compute_inner/middle/outer |versions of compute used by rRESPA

The inner/middle/outer routines are optional.

10.11 Region styles

Classes that define geometric regions are derived from the Region class. Regions are used elsewhere in LAMMPS
to group atoms, delete atoms to create a void, insert atoms in a specified region, etc. New styles can be created to
add new region shapes to LAMMPS.

Region_sphere.cpp is an example of a spherical region.

Here is a brief description of methods you define in your new derived class. See region.h for details.

determine whether a point is in the

match)
region

10.11 Body styles

Classes that define body particles are derived from the Body class. Body particles can represent complex entities,
such as surface meshes of discrete points, collections of sub-particles, deformable objects, etc.

See Section_howto 14 of the manual for an overview of using body particles and the body doc page for details on
the various body styles LAMMPS supports. New styles can be created to add new kinds of body particles to
LAMMPS.

Body_nparticle.cpp is an example of a body particle that is treated as a rigid body containing N sub-particles.

Here is a brief description of methods you define in your new derived class. See body.h for details.

data_body process a line from the Bodies section of a data file
noutrow number of sub-particles output is generated for

noutcol number of values per-sub-particle output is generated for
output output values for the Mth sub-particle

pack_comm_body [body attributes to communicate every timestep

unpack_comm_body |unpacking of those attributes

pack_border_body |body attributes to communicate when reneighboring is done

unpack_border_body [unpacking of those attributes

10.13 Thermodynamic output options

There is one class that computes and prints thermodynamic information to the screen and log file; see the file
thermo.cpp.

There are two styles defined in thermo.cpp: "one" and "multi". There is also a flexible "custom" style which

allows the user to explicitly list keywords for quantities to print when thermodynamic info is output. See the
thermo_style command for a list of defined quantities.

111

The thermo styles (one, multi, etc) are simply lists of keywords. Adding a new style thus only requires defining a
new list of keywords. Search for the word "customize" with references to "thermo style" in thermo.cpp to see the
two locations where code will need to be added.

New keywords can also be added to thermo.cpp to compute new quantities for output. Search for the word
"customize" with references to "keyword" in thermo.cpp to see the several locations where code will need to be
added.

Note that the thermo_style custom command already allows for thermo output of quantities calculated by fixes,
computes, and variables. Thus, it may be simpler to compute what you wish via one of those constructs, than by
adding a new keyword to the thermo command.

10.14 Variable options

There is one class that computes and stores variable information in LAMMPS; see the file variable.cpp. The value
associated with a variable can be periodically printed to the screen via the print, fix print, or thermo_style custom
commands. Variables of style "equal”" can compute complex equations that involve the following types of
arguments:

thermo keywords = ke, vol, atoms, ... other variables = v_a, v_myyvar, ... math functions = div(x,y), mult(x,y),
add(x,y), ... group functions = mass(group), xcm(group,x), ... atom values = x123, y3, vx34, ... compute values =
c_mytemp0, c_thermo_press3, ...

Adding keywords for the thermo_style custom command (which can then be accessed by variables) was discussed
here on this page.

Adding a new math function of one or two arguments can be done by editing one section of the
Variable::evaulate() method. Search for the word "customize" to find the appropriate location.

Adding a new group function can be done by editing one section of the Variable::evaulate() method. Search for
the word "customize" to find the appropriate location. You may need to add a new method to the Group class as
well (see the group.cpp file).

Accessing a new atom-based vector can be done by editing one section of the Variable::evaulate() method. Search
for the word "customize" to find the appropriate location.

Adding new compute styles (whose calculated values can then be accessed by variables) was discussed here on
this page.

10.15 Submitting new features for inclusion in LAMMPS

We encourage users to submit new features that they add to LAMMPS to the developers, especially if you think
the features will be of interest to other users. If they are broadly useful we may add them as core files to
LAMMPS or as part of a standard package. Else we will add them as a user-contributed package or file. Examples
of user packages are in src sub-directories that start with USER. The USER-MISC package is simply a collection
of (mostly) unrelated single files, which is the simplest way to have your contribution quickly added to the
LAMMPS distribution. You can see a list of the both standard and user packages by typing "make package" in the
LAMMPS src directory.

112

http://lammps.sandia.gov/authors.html

With user packages and files, all we are really providing (aside from the fame and fortune that accompanies
having your name in the source code and on the Authors page of the LAMMPS WWW site), is a means for you to
distribute your work to the LAMMPS user community and a mechanism for others to easily try out your new
feature. This may help you find bugs or make contact with new collaborators. Note that you're also implicitly
agreeing to support your code which means answer questions, fix bugs, and maintain it if LAMMPS changes.

The previous sections of this doc page describe how to add new features of various kinds to LAMMPS. Packages
are simply collections of one or more new class files which are invoked as a new "style" within a LAMMPS input
script. If designed correctly, these additions typically do not require changes to the main core of LAMMPS; they
are simply add-on files. If you think your new feature requires non-trivial changes in core LAMMPS files, you'll
need to communicate with the developers, since we may or may not want to make those changes. An example of a
trivial change is making a parent-class method "virtual" when you derive a new child class from it.

Here is what you need to do to submit a user package or single file for our consideration. Following these steps
will save time for both you and us. See existing package files for examples.

¢ All source files you provide must compile with the most current version of LAMMPS.

¢ If you want your file(s) to be added to main LAMMPS or one of its standard packages, then it needs to be
written in a style compatible with other LAMMPS source files. This is so the developers can understand it
and hopefully maintain it. This basically means that the code accesses data structures, performs its
operations, and is formatted similar to other LAMMPS source files, including the use of the error class for
error and warning messages.

¢ [f your contribution is a single file (actually a *.cpp and *.h file) it can most rapidly be added to the
USER-MISC directory. Send us the one-line entry to add to the USER-MISC/README file in that dir,
along with the 2 source files. You can do this multiple times if you wish to contribute several individual
features.

¢ If your contribution is several related featues, it is probably best to make it a user package directory with
a name like USER-FOO. In addition to your new files, the directory should contain a README, and
Install.csh file. The README text file should contain your name and contact information and a brief
description of what your new package does. The Install.csh file enables LAMMPS to include and exclude
your package. See other README and Install.sh files in other USER directories as examples. Send us a
tarball of this USER-FOQ directory.

® Your new source files need to have the LAMMPS copyright, GPL notice, and your name at the top, like
other LAMMPS source files. They need to create a class that is inside the LAMMPS namespace. If the
file is for one of the USER packages, including USER-MISC, then we are not as picky about the coding
style (see above). I.e. they do not need to be in the same stylistic format and syntax as other LAMMPS
files, though that would be nice.

¢ Finally, you must also send a documentation file for each new command or style you are adding to
LAMMPS. This will be one file for a single-file feature. For a package, it might be several files. These
are simple text files which we will convert to HTML. They must be in the same format as other *.txt files
in the lammps/doc directory for similar commands and styles. The "Restrictions” section of the doc page
should indicate that your command is only available if LAMMPS is built with the appropriate
USER-MISC or USER-FOO package. See other user package doc files for an example of how to do this.
The txt2html tool we use to do the conversion can be downloaded from this site, so you can perform the
HTML conversion yourself to proofread your doc page.

Note that the more clear and self-explanatory you make your doc and README files, the more likely it is that
users will try out your new feature.

(Foo) Foo, Morefoo, and Maxfoo, J of Classic Potentials, 75, 345 (1997).

113

http://lammps.sandia.gov/authors.html
http://lammps.sandia.gov
http://lammps.sandia.gov/authors.html
http://www.sandia.gov/~sjplimp/download.html

Previous Section - LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands - Next Section

11. Python interface to LAMMPS

This section describes how to build and use LAMMPS via a Python interface.

¢ 11.1 Building LAMMPS as a shared library

¢ 11.2 Installing the Python wrapper into Python

¢ 11.3 Extending Python with MPI to run in parallel
® 11.4 Testing the Python-LAMMPS interface

¢ 11.5 Using LAMMPS from Python

¢ 11.6 Example Python scripts that use LAMMPS

The LAMMPS distribution includes the file python/lammps.py which wraps the library interface to LAMMPS.
This file makes it is possible to run LAMMPS, invoke LAMMPS commands or give it an input script, extract
LAMMPS results, an modify internal LAMMPS variables, either from a Python script or interactively from a
Python prompt. You can do the former in serial or parallel. Running Python interactively in parallel does not
generally work, unless you have a package installed that extends your Python to enable multiple instances of
Python to read what you type.

Python is a powerful scripting and programming language which can be used to wrap software like LAMMPS and
other packages. It can be used to glue multiple pieces of software together, e.g. to run a coupled or multiscale
model. See Section section of the manual and the couple directory of the distribution for more ideas about
coupling LAMMPS to other codes. See Section_start 4 about how to build LAMMPS as a library, and
Section_howto 19 for a description of the library interface provided in src/library.cpp and src/library.h and how to
extend it for your needs. As described below, that interface is what is exposed to Python. It is designed to be easy
to add functions to. This can easily extend the Python inteface as well. See details below.

By using the Python interface, LAMMPS can also be coupled with a GUI or other visualization tools that display
graphs or animations in real time as LAMMPS runs. Examples of such scripts are inlcluded in the python
directory.

Two advantages of using Python are how concise the language is, and that it can be run interactively, enabling
rapid development and debugging of programs. If you use it to mostly invoke costly operations within LAMMPS,
such as running a simulation for a reasonable number of timesteps, then the overhead cost of invoking LAMMPS
thru Python will be negligible.

Before using LAMMPS from a Python script, you need to do two things. You need to build LAMMPS as a
dynamic shared library, so it can be loaded by Python. And you need to tell Python how to find the library and the
Python wrapper file python/lammps.py. Both these steps are discussed below. If you wish to run LAMMPS in
parallel from Python, you also need to extend your Python with MPI. This is also discussed below.

The Python wrapper for LAMMPS uses the amazing and magical (to me) "ctypes" package in Python, which
auto-generates the interface code needed between Python and a set of C interface routines for a library. Ctypes is
part of standard Python for versions 2.5 and later. You can check which version of Python you have installed, by
simply typing "python" at a shell prompt.

114

http://lammps.sandia.gov
http://www.python.org

11.1 Building LAMMPS as a shared library

Instructions on how to build LAMMPS as a shared library are given in Section_start 5. A shared library is one
that is dynamically loadable, which is what Python requires. On Linux this is a library file that ends in ".so", not

a.

From the src directory, type

make makeshlib
make —-f Makefile.shlib foo

where foo is the machine target name, such as linux or g++ or serial. This should create the file liblammps_foo.so
in the src directory, as well as a soft link liblammps.so, which is what the Python wrapper will load by default.
Note that if you are building multiple machine versions of the shared library, the soft link is always set to the most
recently built version.

If this fails, see Section_start 5 for more details, especially if your LAMMPS build uses auxiliary libraries like
MPI or FFTW which may not be built as shared libraries on your system.

11.2 Installing the Python wrapper into Python
For Python to invoke LAMMPS, there are 2 files it needs to know about:

¢ python/lammps.py
¢ src/liblammps.so

Lammps.py is the Python wrapper on the LAMMPS library interface. Liblammps.so is the shared LAMMPS
library that Python loads, as described above.

You can insure Python can find these files in one of two ways:

® set two environment variables
¢ run the python/install.py script

If you set the paths to these files as environment variables, you only have to do it once. For the csh or tcsh shells,
add something like this to your ~/.cshrc file, one line for each of the two files:

setenv PYTHONPATH $PYTHONPATH:/home/sjplimp/lammps/python
setenv LD_LIBRARY_PATH $LD_LIBRARY PATH:/home/sjplimp/lammps/src

If you use the python/install.py script, you need to invoke it every time you rebuild LAMMPS (as a shared
library) or make changes to the python/lammps.py file.

You can invoke install.py from the python directory as
% python install.py [libdir] [pydir]
The optional libdir is where to copy the LAMMPS shared library to; the default is /usr/local/lib. The optional

pydir is where to copy the lammps.py file to; the default is the site-packages directory of the version of Python
that is running the install script.

115

Note that libdir must be a location that is in your default LD_ILIBRARY_PATH, like /usr/local/lib or /usr/lib. And
pydir must be a location that Python looks in by default for imported modules, like its site-packages dir. If you
want to copy these files to non-standard locations, such as within your own user space, you will need to set your
PYTHONPATH and LD_LIBRARY_PATH environment variables accordingly, as above.

If the install.py script does not allow you to copy files into system directories, prefix the python command with
"sudo". If you do this, make sure that the Python that root runs is the same as the Python you run. E.g. you may
need to do something like

% sudo /usr/local/bin/python install.py [libdir] [pydir]
You can also invoke install.py from the make command in the src directory as
% make install-python

In this mode you cannot append optional arguments. Again, you may need to prefix this with "sudo". In this mode
you cannot control which Python is invoked by root.

Note that if you want Python to be able to load different versions of the LAMMPS shared library (see this section
below), you will need to manually copy files like liblammps_g++.s0 into the appropriate system directory. This is
not needed if you set the LD_LIBRARY_PATH environment variable as described above.

11.3 Extending Python with MPI to run in parallel

If you wish to run LAMMPS in parallel from Python, you need to extend your Python with an interface to MPI.
This also allows you to make MPI calls directly from Python in your script, if you desire.

There are several Python packages available that purport to wrap MPI as a library and allow MPI functions to be
called from Python.

These include

* pyMPI

® maroonmpi
* mpidpy

e myMPI

® Pypar

All of these except pyMPI work by wrapping the MPI library and exposing (some portion of) its interface to your
Python script. This means Python cannot be used interactively in parallel, since they do not address the issue of
interactive input to multiple instances of Python running on different processors. The one exception is pyMPI,
which alters the Python interpreter to address this issue, and (I believe) creates a new alternate executable (in
place of "python" itself) as a result.

In principle any of these Python/MPI packages should work to invoke LAMMPS in parallel and MPI calls
themselves from a Python script which is itself running in parallel. However, when I downloaded and looked at a
few of them, their documentation was incomplete and I had trouble with their installation. It's not clear if some of
the packages are still being actively developed and supported.

The one I recommend, since I have successfully used it with LAMMPS, is Pypar. Pypar requires the ubiquitous
Numpy package be installed in your Python. After launching python, type

116

http://pympi.sourceforge.net/
http://code.google.com/p/maroonmpi/
http://code.google.com/p/mpi4py/
http://nbcr.sdsc.edu/forum/viewtopic.php?t=89&sid=c997fefc3933bd66204875b436940f16
http://code.google.com/p/pypar
http://numpy.scipy.org

import numpy

to see if it is installed. If not, here is how to install it (version 1.3.0b1 as of April 2009). Unpack the numpy tarball
and from its top-level directory, type

python setup.py build
sudo python setup.py install

The "sudo" is only needed if required to copy Numpy files into your Python distribution's site-packages directory.

To install Pypar (version pypar-2.1.4_94 as of Aug 2012), unpack it and from its "source" directory, type

python setup.py build
sudo python setup.py install

Again, the "sudo" is only needed if required to copy Pypar files into your Python distribution's site-packages
directory.

If you have successully installed Pypar, you should be able to run Python and type
import pypar

without error. You should also be able to run python in parallel on a simple test script
% mpirun -np 4 python test.py

where test.py contains the lines

import pypar
print "Proc %d out of %d procs" % (pypar.rank(),pypar.size())

and see one line of output for each processor you run on.

IMPORTANT NOTE: To use Pypar and LAMMPS in parallel from Python, you must insure both are using the
same version of MPL. If you only have one MPI installed on your system, this is not an issue, but it can be if you
have multiple MPIs. Your LAMMPS build is explicit about which MPI it is using, since you specify the details in
your lo-level scc/MAKE/Makefile.foo file. Pypar uses the "mpicc” command to find information about the MPI it
uses to build against. And it tries to load "libmpi.so" from the LD_LIBRARY_PATH. This may or may not find
the MPI library that LAMMPS is using. If you have problems running both Pypar and LAMMPS together, this is
an issue you may need to address, e.g. by moving other MPI installations so that Pypar finds the right one.

11.4 Testing the Python-LAMMPS interface

To test if LAMMPS is callable from Python, launch Python interactively and type:

>>> from lammps import lammps
>>> 1lmp = lammps ()

If you get no errors, you're ready to use LAMMPS from Python. If the 2nd command fails, the most common
error to see is

OSError: Could not load LAMMPS dynamic library

117

which means Python was unable to load the LAMMPS shared library. This typically occurs if the system can't
find the LAMMPS shared library or one of the auxiliary shared libraries it depends on, or if something about the
library is incompatible with your Python. The error message should give you an indication of what went wrong.

You can also test the load directly in Python as follows, without first importing from the lammps.py file:

>>> from ctypes import CDLL
>>> CDLL("liblammps.so")

If an error occurs, carefully go thru the steps in Section_start 5 and above about building a shared library and
about insuring Python can find the necessary two files it needs.

Test LAMMPS and Python in serial:

To run a LAMMPS test in serial, type these lines into Python interactively from the bench directory:

>>> from lammps import lammps
>>> Imp = lammps ()
>>> Imp.file("in.13")

Or put the same lines in the file test.py and run it as

)

% python test.py

Either way, you should see the results of running the in.lj benchmark on a single processor appear on the screen,
the same as if you had typed something like:

Imp_g++ <in.l]

Test LAMMPS and Python in parallel:

To run LAMMPS in parallel, assuming you have installed the Pypar package as discussed above, create a test.py
file containing these lines:

import pypar

from lammps import lammps

Imp = lammps ()

Imp.file("in.13")

print "Proc %d out of %d procs has" % (pypar.rank(),pypar.size()),lmp
pypar.finalize ()

You can then run it in parallel as:

)

% mpirun -np 4 python test.py

and you should see the same output as if you had typed

% mpirun -np 4 lmp_g++ <in.lj

Note that if you leave out the 3 lines from test.py that specify Pypar commands you will instantiate and run
LAMMPS independently on each of the P processors specified in the mpirun command. In this case you should
get 4 sets of output, each showing that a LAMMPS run was made on a single processor, instead of one set of
output showing that LAMMPS ran on 4 processors. If the 1-processor outputs occur, it means that Pypar is not
working correctly.

118

http://datamining.anu.edu.au/~ole/pypar

Also note that once you import the PyPar module, Pypar initializes MPI for you, and you can use MPI calls
directly in your Python script, as described in the Pypar documentation. The last line of your Python script should
be pypar.finalize(), to insure MPI is shut down correctly.

Running Python scripts:

Note that any Python script (not just for LAMMPS) can be invoked in one of several ways:

o°

python foo.script
python -i foo.script
foo.script

o°

o°

The last command requires that the first line of the script be something like this:

#!/usr/local/bin/python
#!/usr/local/bin/python -i

where the path points to where you have Python installed, and that you have made the script file executable:

)

% chmod +x foo.script

Without the "-i" flag, Python will exit when the script finishes. With the "-i" flag, you will be left in the Python
interpreter when the script finishes, so you can type subsequent commands. As mentioned above, you can only
run Python interactively when running Python on a single processor, not in parallel.

11.5 Using LAMMPS from Python

The Python interface to LAMMPS consists of a Python "lammps" module, the source code for which is in
python/lammps.py, which creates a "lammps" object, with a set of methods that can be invoked on that object.
The sample Python code below assumes you have first imported the "lammps" module in your Python script, as
follows:

from lammps import lammps

These are the methods defined by the lammps module. If you look at the file src/library.cpp you will see that they
correspond one-to-one with calls you can make to the LAMMPS library from a C++ or C or Fortran program.

lmp = lammps () # create a LAMMPS object using the default liblammps.so library
lmp = lammps ("g++") # create a LAMMPS object using the liblammps_g++.so library

Ilmp = lammps("",list) # ditto, with command-line args, e.g. list = ["-echo","screen"]
Imp = lammps ("g++",list)

Ilmp.close () # destroy a LAMMPS object

Imp.file(file) # run an entire input script, file = "in.13"

lmp.command (cmd) # invoke a single LAMMPS command, cmd = "run 100"

xlo = lmp.extract_global (name,type) # extract a global quantity

name = "boxxlo", "nlocal", etc
type = 0 = int
1 = double
coords = lmp.extract_atom(name, type) # extract a per—atom quantity
name = "x", "type", etc

119

= vector of ints
= array of ints
vector of doubles
= array of doubles

type =

L
w N R o
I

eng = lmp.extract_compute (id,style, type)
v3 = lmp.extract_fix(id, style, type,i, J)

extract value(s) from a compute

extract value(s) from a fix

id = ID of compute or fix

style = 0 = global data

1 = per—atom data

2 = local data

0 = scalar

1 = vector

2 = array

i,j = indices of value in global vector or array

type =

S o e S S S e 3 S o

var = lmp.extract_variable (name,group, flag) extract value(s) from a variable
name = name of variable
group = group ID (ignored for equal-style variables)
flag = 0 = equal-style variable
1

= atom-style variable

He o W

total # of atoms as int

return atom attribute of all atoms gathered into data, o
name = "x", "charge", "type", etc

count = # of per-atom values, 1 or 3, etc

scatter atom attribute of all atoms from data, ordered Db
name = "x", "charge", "type", etc

count = # of per-atom values, 1 or 3, etc

natoms = lmp.get_natoms ()
data = lmp.gather_atoms (name, type, count)

Ilmp.scatter_atoms (name, type, count,data)

B e

IMPORTANT NOTE: Currently, the creation of a LAMMPS object from within lammps.py does not take an MPI
communicator as an argument. There should be a way to do this, so that the LAMMPS instance runs on a subset
of processors if desired, but I don't know how to do it from Pypar. So for now, it runs with
MPI_COMM_WORLD, which is all the processors. If someone figures out how to do this with one or more of the
Python wrappers for MPI, like Pypar, please let us know and we will amend these doc pages.

Note that you can create multiple LAMMPS objects in your Python script, and coordinate and run multiple
simulations, e.g.

from lammps import lammps
Impl = lammps ()

Ilmp2 = lammps ()
Impl.file("in.filel")
Imp2.file("in.file2")

The file() and command() methods allow an input script or single commands to be invoked.

The extract_global(), extract_atom(), extract_compute(), extract_fix(), and extract_variable() methods return
values or pointers to data structures internal to LAMMPS.

For extract_global() see the src/library.cpp file for the list of valid names. New names could easily be added. A
double or integer is returned. You need to specify the appropriate data type via the type argument.

For extract_atom(), a pointer to internal LAMMPS atom-based data is returned, which you can use via normal
Python subscripting. See the extract() method in the src/atom.cpp file for a list of valid names. Again, new names
could easily be added. A pointer to a vector of doubles or integers, or a pointer to an array of doubles (double **)
or integers (int **) is returned. You need to specify the appropriate data type via the type argument.

120

For extract_compute() and extract_fix(), the global, per-atom, or local data calulated by the compute or fix can be
accessed. What is returned depends on whether the compute or fix calculates a scalar or vector or array. For a
scalar, a single double value is returned. If the compute or fix calculates a vector or array, a pointer to the internal
LAMMPS data is returned, which you can use via normal Python subscripting. The one exception is that for a fix
that calculates a global vector or array, a single double value from the vector or array is returned, indexed by I
(vector) or I and J (array). IJ are zero-based indices. The I,J arguments can be left out if not needed. See
Section_howto 15 of the manual for a discussion of global, per-atom, and local data, and of scalar, vector, and
array data types. See the doc pages for individual computes and fixes for a description of what they calculate and
store.

For extract_variable(), an equal-style or atom-style variable is evaluated and its result returned.

For equal-style variables a single double value is returned and the group argument is ignored. For atom-style
variables, a vector of doubles is returned, one value per atom, which you can use via normal Python subscripting.
The values will be zero for atoms not in the specified group.

The get_natoms() method returns the total number of atoms in the simulation, as an int.

The gather_atoms() method returns a ctypes vector of ints or doubles as specified by type, of length
count*natoms, for the property of all the atoms in the simulation specified by name, ordered by count and then by
atom ID. The vector can be used via normal Python subscripting. If atom IDs are not consecutively ordered within
LAMMPS, a None is returned as indication of an error.

Note that the data structure gather_atoms("x") returns is different from the data structure returned by
extract_atom("x") in four ways. (1) Gather_atoms() returns a vector which you index as x[i]; extract_atom()
returns an array which you index as x[i][j]. (2) Gather_atoms() orders the atoms by atom ID while extract_atom()
does not. (3) Gathert_atoms() returns a list of all atoms in the simulation; extract_atoms() returns just the atoms
local to each processor. (4) Finally, the gather_atoms() data structure is a copy of the atom coords stored
internally in LAMMPS, whereas extract_atom() returns an array that effectively points directly to the internal
data. This means you can change values inside LAMMPS from Python by assigning a new values to the
extract_atom() array. To do this with the gather_atoms() vector, you need to change values in the vector, then
invoke the scatter_atoms() method.

The scatter_atoms() method takes a vector of ints or doubles as specified by type, of length count*natoms, for the
property of all the atoms in the simulation specified by name, ordered by bount and then by atom ID. It uses the
vector of data to overwrite the corresponding properties for each atom inside LAMMPS. This requires LAMMPS
to have its "map" option enabled; see the atom_modify command for details. If it is not, or if atom IDs are not
consecutively ordered, no coordinates are reset.

The array of coordinates passed to scatter_atoms() must be a ctypes vector of ints or doubles, allocated and
initialized something like this:

from ctypes import *

natoms = lmp.get_natoms ()

n3 = 3*natoms

x = (n3*c_double) ()

x0 = x coord of atom with ID 1

x1l = y coord of atom with ID 1

x2 = z coord of atom with ID 1

x3 = x coord of atom with ID 2

xn3-1 = z coord of atom with ID natoms

lmp.scatter_coords ("x",1, 3, x)

121

Alternatively, you can just change values in the vector returned by gather_atoms("x",1,3), since it is a ctypes
vector of doubles.

As noted above, these Python class methods correspond one-to-one with the functions in the LAMMPS library
interface in src/library.cpp and library.h. This means you can extend the Python wrapper via the following steps:

¢ Add a new interface function to src/library.cpp and src/library.h.

¢ Rebuild LAMMPS as a shared library.

¢ Add a wrapper method to python/lammps.py for this interface function.

¢ You should now be able to invoke the new interface function from a Python script. Isn't ctypes amazing?

11.6 Example Python scripts that use LAMMPS

These are the Python scripts included as demos in the python/examples directory of the LAMMPS distribution, to
illustrate the kinds of things that are possible when Python wraps LAMMPS. If you create your own scripts, send
them to us and we can include them in the LAMMPS distribution.

trivial.py read/run a LAMMPS input script thru Python

demo.py invoke various LAMMPS library interface routines
simple.py mimic operation of couple/simple/simple.cpp in Python
gui.py GUI go/stop/temperature-slider to control LAMMPS
plot.py real-time temeperature plot with GnuPlot via Pizza.py
viz_tool.py real-time viz via some viz package

vizplotgui_tool.py [combination of viz_tool.py and plot.py and gui.py

For the viz_tool.py and vizplotgui_tool.py commands, replace "tool" with "gl" or "atomeye" or "pymol" or
"vmmd", depending on what visualization package you have installed.

Note that for GL, you need to be able to run the Pizza.py GL tool, which is included in the pizza sub-directory.
See the Pizza.py doc pages for more info:

Note that for AtomEye, you need version 3, and there is a line in the scripts that specifies the path and name of the
executable. See the AtomEye WWW pages here or here for more details:

http://mt.seas.upenn.edu/Archive/Graphics/A
http://mt.seas.upenn.edu/Archive/Graphics/A3/A3.html

The latter link is to AtomEye 3 which has the scriping capability needed by these Python scripts.

Note that for PyMol, you need to have built and installed the open-source version of PyMol in your Python, so
that you can import it from a Python script. See the PyMol WWW pages here or here for more details:

http://www.pymol.org
http://sourceforge.net/scm/?2type=svn&group_id=4546

The latter link is to the open-source version.

Note that for VMD, you need a fairly current version (1.8.7 works for me) and there are some lines in the
pizza/vmd.py script for 4 PIZZA variables that have to match the VMD installation on your system.

122

http://www.sandia.gov/~sjplimp/pizza.html
http://mt.seas.upenn.edu/Archive/Graphics/A
http://mt.seas.upenn.edu/Archive/Graphics/A3/A3.html
http://www.pymol.org
http://sourceforge.net/scm/?type=svn&group_id=4546

See the python/README file for instructions on how to run them and the source code for individual scripts for
comments about what they do.

Here are screenshots of the vizplotgui_tool.py script in action for different visualization package options. Click to
see larger images:

123

Previous Section - LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands - Next Section

12. Errors

This section describes the errors you can encounter when using LAMMPS, either conceptually, or as printed out
by the program.

12.1 Common problems
12.2 Reporting bugs
12.3 Error & warning messages

12.1 Common problems

If two LAMMPS runs do not produce the same answer on different machines or different numbers of processors,
this is typically not a bug. In theory you should get identical answers on any number of processors and on any
machine. In practice, numerical round-off can cause slight differences and eventual divergence of molecular
dynamics phase space trajectories within a few 100s or few 1000s of timesteps. However, the statistical properties
of the two runs (e.g. average energy or temperature) should still be the same.

If the velocity command is used to set initial atom velocities, a particular atom can be assigned a different velocity
when the problem is run on a different number of processors or on different machines. If this happens, the phase
space trajectories of the two simulations will rapidly diverge. See the discussion of the loop option in the velocity
command for details and options that avoid this issue.

Similarly, the create_atoms command generates a lattice of atoms. For the same physical system, the ordering and
numbering of atoms by atom ID may be different depending on the number of processors.

Some commands use random number generators which may be setup to produce different random number streams
on each processor and hence will produce different effects when run on different numbers of processors. A
commonly-used example is the fix langevin command for thermostatting.

A LAMMPS simulation typically has two stages, setup and run. Most LAMMPS errors are detected at setup time;
others like a bond stretching too far may not occur until the middle of a run.

LAMMPS tries to flag errors and print informative error messages so you can fix the problem. Of course,
LAMMPS cannot figure out your physics or numerical mistakes, like choosing too big a timestep, specifying
erroneous force field coefficients, or putting 2 atoms on top of each other! If you run into errors that LAMMPS
doesn't catch that you think it should flag, please send an email to the developers.

If you get an error message about an invalid command in your input script, you can determine what command is
causing the problem by looking in the log.lammps file or using the echo command to see it on the screen. For a
given command, LAMMPS expects certain arguments in a specified order. If you mess this up, LAMMPS will
often flag the error, but it may read a bogus argument and assign a value that is valid, but not what you wanted.
E.g. trying to read the string "abc" as an integer value and assigning the associated variable a value of 0.

Generally, LAMMPS will print a message to the screen and logfile and exit gracefully when it encounters a fatal
error. Sometimes it will print a WARNING to the screen and logfile and continue on; you can decide if the
WARNING is important or not. A WARNING message that is generated in the middle of a run is only printed to
the screen, not to the logfile, to avoid cluttering up thermodynamic output. If LAMMPS crashes or hangs without
spitting out an error message first then it could be a bug (see this section) or one of the following cases:

124

http://lammps.sandia.gov
http://lammps.sandia.gov/authors.html

LAMMPS runs in the available memory a processor allows to be allocated. Most reasonable MD runs are
compute limited, not memory limited, so this shouldn't be a bottleneck on most platforms. Almost all large
memory allocations in the code are done via C-style malloc's which will generate an error message if you run out
of memory. Smaller chunks of memory are allocated via C++ "new" statements. If you are unlucky you could run
out of memory just when one of these small requests is made, in which case the code will crash or hang (in
parallel), since LAMMPS doesn't trap on those errors.

Illegal arithmetic can cause LAMMPS to run slow or crash. This is typically due to invalid physics and numerics
that your simulation is computing. If you see wild thermodynamic values or NaN values in your LAMMPS
output, something is wrong with your simulation. If you suspect this is happening, it is a good idea to print out
thermodynamic info frequently (e.g. every timestep) via the thermo so you can monitor what is happening.
Visualizing the atom movement is also a good idea to insure your model is behaving as you expect.

In parallel, one way LAMMPS can hang is due to how different MPI implementations handle buffering of
messages. If the code hangs without an error message, it may be that you need to specify an MPI setting or two
(usually via an environment variable) to enable buffering or boost the sizes of messages that can be buffered.

12.2 Reporting bugs
If you are confident that you have found a bug in LAMMPS, follow these steps.

Check the New features and bug fixes section of the LAMMPS WWW gite to see if the bug has already been
reported or fixed or the Unfixed bug to see if a fix is pending.

Check the mailing list to see if it has been discussed before.

If not, send an email to the mailing list describing the problem with any ideas you have as to what is causing it or
where in the code the problem might be. The developers will ask for more info if needed, such as an input script
or data files.

The most useful thing you can do to help us fix the bug is to isolate the problem. Run it on the smallest number of
atoms and fewest number of processors and with the simplest input script that reproduces the bug and try to

identify what command or combination of commands is causing the problem.

As a last resort, you can send an email directly to the developers.

12.3 Error & warning messages

These are two alphabetic lists of the ERROR and WARNING messages LAMMPS prints out and the reason why.
If the explanation here is not sufficient, the documentation for the offending command may help. Error and
warning messages also list the source file and line number where the error was generated. For example, this
message

ERROR: Illegal velocity command (velocity.cpp:78)

means that line #78 in the file src/velocity.cpp generated the error. Looking in the source code may help you
figure out what went wrong.

Note that error messages from user-contributed packages are not listed here. If such an error occurs and is not
self-explanatory, you'll need to look in the source code or contact the author of the package.

125

http://lammps.sandia.gov/bug.html
http://lammps.sandia.gov
http://lammps.sandia.gov/unbug.html
http://lammps.sandia.gov/mail.html
http://lammps.sandia.gov/authors.html

Errors:

1-3 bond count is inconsistent
An inconsistency was detected when computing the number of 1-3 neighbors for each atom. This likely
means something is wrong with the bond topologies you have defined.

1-4 bond count is inconsistent
An inconsistency was detected when computing the number of 1-4 neighbors for each atom. This likely
means something is wrong with the bond topologies you have defined.

Accelerator sharing is not currently supported on system
Multiple MPI processes cannot share the accelerator on your system. For NVIDIA GPUs, see the
nvidia-smi command to change this setting.

All angle coeffs are not set
All angle coefficients must be set in the data file or by the angle_coeff command before running a
simulation.

All bond coeffs are not set
All bond coefficients must be set in the data file or by the bond_coeff command before running a
simulation.

All dihedral coeffs are not set
All dihedral coefficients must be set in the data file or by the dihedral_coeff command before running a
simulation.

All improper coeffs are not set
All improper coefficients must be set in the data file or by the improper_coeff command before running a
simulation.

All masses are not set
For atom styles that define masses for each atom type, all masses must be set in the data file or by the
mass command before running a simulation. They must also be set before using the velocity command.

All mol IDs should be set for fix gcmc group atoms
The molecule flag is on, yet not all molecule ids in the fix group have been set to non-zero positive values
by the user. This is an error since all atoms in the fix gcmc group are eligible for deletion, rotation, and
translation and therefore must have valid molecule ids.

All pair coeffs are not set
All pair coefficients must be set in the data file or by the pair_coeff command before running a
simulation.

All read_dump x,y,z fields must be specified for scaled, triclinic coords
For triclinic boxes and scaled coordinates you must specify all 3 of the x,y,z fields, else LAMMPS cannot
reconstruct the unscaled coordinates.

All universe/uloop variables must have same # of values
Self-explanatory.

All variables in next command must be same style
Self-explanatory.

Angle atom missing in delete_bonds
The delete_bonds command cannot find one or more atoms in a particular angle on a particular processor.
The pairwise cutoff is too short or the atoms are too far apart to make a valid angle.

Angle atom missing in set command
The set command cannot find one or more atoms in a particular angle on a particular processor. The
pairwise cutoff is too short or the atoms are too far apart to make a valid angle.

Angle atoms %d %d %d missing on proc %d at step %ld
One or more of 3 atoms needed to compute a particular angle are missing on this processor. Typically this
is because the pairwise cutoff is set too short or the angle has blown apart and an atom is too far away.

Angle coeff for hybrid has invalid style
Angle style hybrid uses another angle style as one of its coefficients. The angle style used in the
angle_coeff command or read from a restart file is not recognized.

126

Angle coeffs are not set
No angle coefficients have been assigned in the data file or via the angle_coeff command.
Angle extent > half of periodic box length
This error was detected by the neigh_modify check yes setting. It is an error because the angle atoms are
so far apart it is ambiguous how it should be defined.
Angle potential must be defined for SHAKE
When shaking angles, an angle_style potential must be used.
Angle style hybrid cannot have hybrid as an argument
Self-explanatory.
Angle style hybrid cannot have none as an argument
Self-explanatory.
Angle style hybrid cannot use same angle style twice
Self-explanatory.
Angle table must range from 0 to 180 degrees
Self-explanatory.
Angle table parameters did not set N
List of angle table parameters must include N setting.
Angle_coeff command before angle_style is defined
Coefficients cannot be set in the data file or via the angle_coeff command until an angle_style has been
assigned.
Angle_coeff command before simulation box is defined
The angle_coeff command cannot be used before a read_data, read_restart, or create_box command.
Angle_coeff command when no angles allowed
The chosen atom style does not allow for angles to be defined.
Angle_style command when no angles allowed
The chosen atom style does not allow for angles to be defined.
Angles assigned incorrectly
Angles read in from the data file were not assigned correctly to atoms. This means there is something
invalid about the topology definitions.
Angles defined but no angle types
The data file header lists angles but no angle types.
Append boundary must be shrink/minimum
The boundary style of the face where atoms are added must be of type m (shrink/minimum).
Arccos of invalid value in variable formula
Argument of arccos() must be between -1 and 1.
Arcsin of invalid value in variable formula
Argument of arcsin() must be between -1 and 1.
Assigning body parameters to non-body atom
Self-explanatory.
Assigning ellipsoid parameters to non-ellipsoid atom
Self-explanatory.
Assigning line parameters to non-line atom
Self-explanatory.
Assigning tri parameters to non-tri atom
Self-explanatory.
Atom ID is negative
Self-explanatory.
Atom ID is too big
The limit on atom IDs is set by the SMALLBIG, BIGBIG, SMALLSMALL setting in your Makefile. See
Section_start 2.2 of the manual for more details.
Atom ID is zero
Either all atoms IDs must be zero or none of them.

127

Atom IDs must be consecutive for velocity create loop all
Self-explanatory.
Atom IDs must be used for molecular systems
Atom IDs are used to identify and find partner atoms in bonds.
Atom count changed in fix neb
This is not allowed in a NEB calculation.
Atom count is inconsistent, cannot write data file
The sum of atoms across processors does not equal the global number of atoms. Probably some atoms
have been lost.
Atom count is inconsistent, cannot write restart file
Sum of atoms across processors does not equal initial total count. This is probably because you have lost
some atoms.
Atom in too many rigid bodies - boost MAXBODY
Fix poems has a parameter MAXBODY (in fix_poems.cpp) which determines the maximum number of
rigid bodies a single atom can belong to (i.e. a multibody joint). The bodies you have defined exceed this
limit.
Atom sort did not operate correctly
This is an internal LAMMPS error. Please report it to the developers.
Atom sorting has bin size = 0.0
The neighbor cutoff is being used as the bin size, but it is zero. Thus you must explicitly list a bin size in
the atom_modify sort command or turn off sorting.
Atom style hybrid cannot have hybrid as an argument
Self-explanatory.
Atom style hybrid cannot use same atom style twice
Self-explanatory.
Atom style template molecule must have atom types
The defined molecule(s) does not specify atom types.
Atom style was redefined after using fix property/atom
This is not allowed.
Atom vector in equal-style variable formula
Atom vectors generate one value per atom which is not allowed in an equal-style variable.
Atom-style variable in equal-style variable formula
Atom-style variables generate one value per atom which is not allowed in an equal-style variable.
Atom_modify id command after simulation box is defined
The atom_modify id command cannot be used after a read_data, read_restart, or create_box command.
Atom_modify map command after simulation box is defined
The atom_modify map command cannot be used after a read_data, read_restart, or create_box command.
Atom_modify sort and first options cannot be used together
Self-explanatory.
Atom_style command after simulation box is defined
The atom_style command cannot be used after a read_data, read_restart, or create_box command.
Atom_style line can only be used in 2d simulations
Self-explanatory.
Atom_style tri can only be used in 3d simulations
Self-explanatory.
Atomffile variable could not read values
Check the file assigned to the variable.
Atomffile variable in equal-style variable formula
Self-explanatory.
Atomfile-style variable in equal-style variable formula
Self-explanatory.
Attempt to pop empty stack in fix box/relax

128

Internal LAMMPS error. Please report it to the developers.
Attempt to push beyond stack limit in fix box/relax
Internal LAMMPS error. Please report it to the developers.
Attempting to rescale a 0.0 temperature
Cannot rescale a temperature that is already 0.0.
Bad FENE bond
Two atoms in a FENE bond have become so far apart that the bond cannot be computed.
Bad TIP4P angle type for PPPM/TIP4P
Specified angle type is not valid.
Bad TIP4P angle type for PPPMDisp/TIP4P
Specified angle type is not valid.
Bad TIP4P bond type for PPPM/TIP4P
Specified bond type is not valid.
Bad TIP4P bond type for PPPMDisp/TIP4P
Specified bond type is not valid.
Bad fix ID in fix append/atoms command
The value of the fix_id for keyword spatial must start with the suffix f_.
Bad grid of processors
The 3d grid of processors defined by the processors command does not match the number of processors
LAMMPS is being run on.
Bad kspace_modify kmax/ewald parameter
Kspace_modify values for the kmax/ewald keyword must be integers > 0
Bad kspace_modify slab parameter
Kspace_modify value for the slab/volume keyword must be >=2.0.
Bad matrix inversion in mldivide3
This error should not occur unless the matrix is badly formed.
Bad principal moments
Fix rigid did not compute the principal moments of inertia of a rigid group of atoms correctly.
Bad quadratic solve for particle/line collision
This is an internal error. It should nornally not occur.
Bad quadratic solve for particle/tri collision
This is an internal error. It should nornally not occur.
Bad real space Coulomb cutoff in fix tune/kspace
Fix tune/kspace tried to find the optimal real space Coulomb cutoff using the Newton-Rhaphson method,
but found a non-positive or NaN cutoff
Balance command before simulation box is defined
The balance command cannot be used before a read_data, read_restart, or create_box command.
Balance dynamic string is invalid
The string can only contain the characters "x", "y", or "z".
Balance produced bad splits
This should not occur. It means two or more cutting plane locations are on top of each other or out of
order. Report the problem to the developers.
Bias compute does not calculate a velocity bias
The specified compute must compute a bias for temperature.
Bias compute does not calculate temperature
The specified compute must compute temperature.
Bias compute group does not match compute group
The specified compute must operate on the same group as the parent compute.
Big particle in fix srd cannot be point particle
Big particles must be extended spheriods or ellipsoids.
Bigint setting in Imptype.h is invalid
Size of bigint is less than size of tagint.

129

Bigint setting in Imptype.h is not compatible
Format of bigint stored in restart file is not consistent with LAMMPS version you are running. See the
settings in src/lmptype.h
Bitmapped lookup tables require int/float be same size
Cannot use pair tables on this machine, because of word sizes. Use the pair_modify command with table
0 instead.
Bitmapped table in file does not match requested table
Setting for bitmapped table in pair_coeff command must match table in file exactly.
Bitmapped table is incorrect length in table file
Number of table entries is not a correct power of 2.
Bond and angle potentials must be defined for TIP4P
Cannot use TIP4P pair potential unless bond and angle potentials are defined.
Bond atom missing in box size check
The 2nd atoms needed to compute a particular bond is missing on this processor. Typically this is because
the pairwise cutoff is set too short or the bond has blown apart and an atom is too far away.
Bond atom missing in delete_bonds
The delete_bonds command cannot find one or more atoms in a particular bond on a particular processor.
The pairwise cutoff is too short or the atoms are too far apart to make a valid bond.
Bond atom missing in image check
The 2nd atom in a particular bond is missing on this processor. Typically this is because the pairwise
cutoff is set too short or the bond has blown apart and an atom is too far away.
Bond atom missing in set command
The set command cannot find one or more atoms in a particular bond on a particular processor. The
pairwise cutoff is too short or the atoms are too far apart to make a valid bond.
Bond atoms %d %d missing on proc %d at step %ld
The 2nd atom needed to compute a particular bond is missing on this processor. Typically this is because
the pairwise cutoff is set too short or the bond has blown apart and an atom is too far away.
Bond coeff for hybrid has invalid style
Bond style hybrid uses another bond style as one of its coefficients. The bond style used in the
bond_coeff command or read from a restart file is not recognized.
Bond coeffs are not set
No bond coefficients have been assigned in the data file or via the bond_coeff command.
Bond extent > half of periodic box length
This error was detected by the neigh_modify check yes setting. It is an error because the bond atoms are
so far apart it is ambiguous how it should be defined.
Bond potential must be defined for SHAKE
Cannot use fix shake unless bond potential is defined.
Bond style hybrid cannot have hybrid as an argument
Self-explanatory.
Bond style hybrid cannot have none as an argument
Self-explanatory.
Bond style hybrid cannot use same bond style twice
Self-explanatory.
Bond style quartic cannot be used with 3,4-body interactions
No angle, dihedral, or improper styles can be defined when using bond style quartic.
Bond style quartic cannot be used with atom style template
This bond style can change the bond topology which is not allowed with this atom style.
Bond style quartic requires special_bonds = 1,1,1
This is a restriction of the current bond quartic implementation.
Bond table parameters did not set N
List of bond table parameters must include N setting.
Bond table values are not increasing

130

The values in the tabulated file must be monotonically increasing.
Bond_coeff command before bond_style is defined
Coefficients cannot be set in the data file or via the bond_coeff command until an bond_style has been
assigned.
Bond_coeff command before simulation box is defined
The bond_coeff command cannot be used before a read_data, read_restart, or create_box command.
Bond_coeff command when no bonds allowed
The chosen atom style does not allow for bonds to be defined.
Bond_style command when no bonds allowed
The chosen atom style does not allow for bonds to be defined.
Bonds assigned incorrectly
Bonds read in from the data file were not assigned correctly to atoms. This means there is something
invalid about the topology definitions.
Bonds defined but no bond types
The data file header lists bonds but no bond types.
Both restart files must use % or neither
Self-explanatory.
Both restart files must use MPI-10 or neither
Self-explanatory.
Both sides of boundary must be periodic
Cannot specify a boundary as periodic only on the lo or hi side. Must be periodic on both sides.
Boundary command after simulation box is defined
The boundary command cannot be used after a read_data, read_restart, or create_box command.
Box bounds are invalid
The box boundaries specified in the read_data file are invalid. The lo value must be less than the hi value
for all 3 dimensions.
Box command after simulation box is defined
The box command cannot be used after a read_data, read_restart, or create_box command.
CPU neighbor lists must be used for ellipsoid/sphere mix.
When using Gay-Berne or RE-squared pair styles with both ellipsoidal and spherical particles, the
neighbor list must be built on the CPU
Can not specify Pxy/Pxz/Pyz in fix box/relax with non-triclinic box
Only triclinic boxes can be used with off-diagonal pressure components. See the region prism command
for details.
Can not specify Pxy/Pxz/Pyz in fix nvt/npt/nph with non-triclinic box
Only triclinic boxes can be used with off-diagonal pressure components. See the region prism command
for details.
Can only use -plog with multiple partitions
Self-explanatory. See doc page discussion of command-line switches.
Can only use -pscreen with multiple partitions
Self-explanatory. See doc page discussion of command-line switches.
Can only use NEB with I-processor replicas
This is current restriction for NEB as implemented in LAMMPS.
Can only use TAD with I-processor replicas for NEB
This is current restriction for NEB as implemented in LAMMPS.
Cannot (yet) do analytic differentiation with pppm/gpu
This is a current restriction of this command.
Cannot (yet) use 'electron’ units with dipoles
This feature is not yet supported.
Cannot (yet) use Ewald with triclinic box and slab correction
This feature is not yet supported.
Cannot (yet) use K-space slab correction with compute group/group

131

This option is not yet supported.
Cannot (yet) use K-space slab correction with compute group/group for triclinic systems
This option is not yet supported.
Cannot (yet) use MSM with 2d simulation
This feature is not yet supported.
Cannot (yet) use PPPM with triclinic box and TIP4P
This feature is not yet supported.
Cannot (yet) use PPPM with triclinic box and kspace_modify diff ad
This feature is not yet supported.
Cannot (yet) use PPPM with triclinic box and slab correction
This feature is not yet supported.
Cannot (yet) use kspace slab correction with long-range dipoles and non-neutral systems or per-atom energy
This feature is not yet supported.
Cannot (yet) use kspace_modify diff ad with compute group/group
This option is not yet supported.
Cannot (yet) use kspace_style pppm/stagger with triclinic systems
This feature is not yet supported.
Cannot (yet) use single precision with MSM (remove -DFFT_SINGLE from Makefile and recompile)
Single precision cannot be used with MSM.
Cannot add atoms to fix move variable
Atoms can not be added afterwards to this fix option.
Cannot append atoms to a triclinic box
The simulation box must be defined with edges alligned with the Cartesian axes.
Cannot balance in 7 dimension for 2d simulation
Self-explanatory.
Cannot change box ortho/triclinic with certain fixes defined
This is because those fixes store the shape of the box. You need to use unfix to discard the fix, change the
box, then redefine a new fix.
Cannot change box ortho/triclinic with dumps defined
This is because some dumps store the shape of the box. You need to use undump to discard the dump,
change the box, then redefine a new dump.
Cannot change box tilt factors for orthogonal box
Cannot use tilt factors unless the simulation box is non-orthogonal.
Cannot change box to orthogonal when tilt is non-zero
Self-explanatory.
Cannot change box z boundary to nonperiodic for a 2d simulation
Self-explanatory.
Cannot change dump_modify every for dump dcd
The frequency of writing dump dcd snapshots cannot be changed.
Cannot change dump_modify every for dump xtc
The frequency of writing dump xtc snapshots cannot be changed.
Cannot change timestep once fix srd is setup
This is because various SRD properties depend on the timestep size.
Cannot change timestep with fix pour
This is because fix pour pre-computes the time delay for particles to fall out of the insertion volume due
to gravity.
Cannot change_box after reading restart file with per-atom info
This is because the restart file info cannot be migrated with the atoms. You can get around this by
performing a O-timestep run which will assign the restart file info to actual atoms.
Cannot change_box in xz or yz for 2d simulation
Self-explanatory.
Cannot change_box in 7 dimension for 2d simulation

132

Self-explanatory.
Cannot close restart file - MPI error: %s
This error was generated by MPI when reading/writing an MPI-10 restart file.
Cannot compute PPPM G
The Ewald factor could not be computed for the current choice of grid size, cutoff, accuracy.
Cannot compute initial g_ewald_disp
LAMMPS failed to compute an initial guess for the PPPM_disp g_ewald_6 factor that partitions the
computation between real space and k-space for Disptersion interactions.
Cannot create an atom map unless atoms have IDs
The simulation requires a mapping from global atom IDs to local atoms, but the atoms that have been
defined have no IDs.
Cannot create atoms with undefined lattice
Must use the lattice command before using the create_atoms command.
Cannot create/grow a vector/array of pointers for %s
LAMMPS code is making an illegal call to the templated memory allocaters, to create a vector or array of
pointers.
Cannot create_atoms after reading restart file with per-atom info
The per-atom info was stored to be used when by a fix that you may re-define. If you add atoms before
re-defining the fix, then there will not be a correct amount of per-atom info.
Cannot create_box after simulation box is defined
A simulation box can only be defined once.
Cannot currently use pair reax with pair hybrid
This is not yet supported.
Cannot currently use pppm/gpu with fix balance.
Self-explanatory.
Cannot delete group all
Self-explanatory.
Cannot delete group currently used by a compute
Self-explanatory.
Cannot delete group currently used by a dump
Self-explanatory.
Cannot delete group currently used by a fix
Self-explanatory.
Cannot delete group currently used by atom_modify first
Self-explanatory.
Cannot displace_atoms after reading restart file with per-atom info
This is because the restart file info cannot be migrated with the atoms. You can get around this by
performing a O-timestep run which will assign the restart file info to actual atoms.
Cannot do GCMC on atoms in atom_modify first group
This is a restriction due to the way atoms are organized in a list to enable the atom_modify first
command.
Cannot dump sort on atom IDs with no atom IDs defined
Self-explanatory.
Cannot dump sort when multiple dump files are written
In this mode, each processor dumps its atoms to a file, so no sorting is allowed.
Cannot evaporate atoms in atom_modify first group
This is a restriction due to the way atoms are organized in a list to enable the atom_modify first
command.
Cannot find delete_bonds group 1D
Group ID used in the delete_bonds command does not exist.
Cannot have both pair_modify shift and tail set to yes
These 2 options are contradictory.

133

Cannot mix molecular and molecule template atom styles

Self-explanatory.
Cannot open -reorder file

Self-explanatory.
Cannot open ADP potential file %os

The specified ADP potential file cannot be opened. Check that the path and name are correct.
Cannot open AIREBO potential file %s

The specified AIREBO potential file cannot be opened. Check that the path and name are correct.
Cannot open BOP potential file %os

The specified BOP potential file cannot be opened. Check that the path and name are correct.
Cannot open COMB potential file %os

The specified COMB potential file cannot be opened. Check that the path and name are correct.
Cannot open COMB3 C library file

The extra lib.comb3 file for carbon cannot be opened. Check that it exists.
Cannot open COMB3 potential file %s

The specified COMB potential file cannot be opened. Check that the path and name are correct.
Cannot open EAM potential file %s

The specified EAM potential file cannot be opened. Check that the path and name are correct.
Cannot open EIM potential file %os

The specified EIM potential file cannot be opened. Check that the path and name are correct.
Cannot open LCBOP potential file %s

The specified LCBOP potential file cannot be opened. Check that the path and name are correct.
Cannot open MEAM potential file %s

The specified MEAM potential file cannot be opened. Check that the path and name are correct.
Cannot open Stillinger-Weber potential file %s

The specified SW potential file cannot be opened. Check that the path and name are correct.
Cannot open Tersoff potential file %os

The specified potential file cannot be opened. Check that the path and name are correct.
Cannot open balance output file

Self-explanatory.
Cannot open custom file

Self-explanatory.
Cannot open data file %s

The specified file cannot be opened. Check that the path and name are correct.
Cannot open dir to search for restart file

Using a "*" in the name of the restart file will open the current directory to search for matching file

names.
Cannot open dump file

The output file for the dump command cannot be opened. Check that the path and name are correct.

Cannot open file %s

The specified file cannot be opened. Check that the path and name are correct. If the file is a compressed

file, also check that the gzip executable can be found and run.
Cannot open file variable file %s

The specified file cannot be opened. Check that the path and name are correct.
Cannot open fix ave/correlate file %s

The specified file cannot be opened. Check that the path and name are correct.
Cannot open fix ave/histo file %s

The specified file cannot be opened. Check that the path and name are correct.
Cannot open fix ave/spatial file %s

The specified file cannot be opened. Check that the path and name are correct.
Cannot open fix ave/time file %s

The specified file cannot be opened. Check that the path and name are correct.

134

Cannot open fix balance output file
Self-explanatory.
Cannot open fix poems file %s
The specified file cannot be opened. Check that the path and name are correct.
Cannot open fix print file %s
The output file generated by the fix print command cannot be opened
Cannot open fix qeq/comb file Yos
The output file for the fix geq/combs command cannot be opened. Check that the path and name are
correct.
Cannot open fix reax/bonds file %s
The output file for the fix reax/bonds command cannot be opened. Check that the path and name are
correct.
Cannot open fix rigid infile %s
The specified file cannot be opened. Check that the path and name are correct.
Cannot open fix rigid restart file %s
The specified file cannot be opened. Check that the path and name are correct.
Cannot open fix rigid/small infile %s
The specified file cannot be opened. Check that the path and name are correct.
Cannot open fix tmd file %s
The output file for the fix tmd command cannot be opened. Check that the path and name are correct.
Cannot open fix ttm file %s
The output file for the fix ttm command cannot be opened. Check that the path and name are correct.
Cannot open gzipped file
LAMMPS was compiled without support for reading and writing gzipped files through a pipeline to the
gzip program with -DLAMMPS_GZIP.
Cannot open input script %s
Self-explanatory.
Cannot open log.cite file
This file is created when you use some LAMMPS features, to indicate what paper you should cite on
behalf of those who implemented the feature. Check that you have write priveleges into the directory you
are running in.
Cannot open log.lammps for writing
The default LAMMPS log file cannot be opened. Check that the directory you are running in allows for
files to be created.
Cannot open logfile
The LAMMPS log file named in a command-line argument cannot be opened. Check that the path and
name are correct.
Cannot open logfile %s
The LAMMPS log file specified in the input script cannot be opened. Check that the path and name are
correct.
Cannot open molecule file %os
The specified file cannot be opened. Check that the path and name are correct.
Cannot open nb3b/harmonic potential file %s
The specified potential file cannot be opened. Check that the path and name are correct.
Cannot open pair_write file
The specified output file for pair energies and forces cannot be opened. Check that the path and name are
correct.
Cannot open print file %s
Self-explanatory.
Cannot open processors output file
Self-explanatory.
Cannot open restart file %s

135

Self-explanatory.
Cannot open restart file for reading - MPI error: %s
This error was generated by MPI when reading/writing an MPI-10 restart file.
Cannot open restart file for writing - MPI error: %s
This error was generated by MPI when reading/writing an MPI-10 restart file.
Cannot open screen file
The screen file specified as a command-line argument cannot be opened. Check that the directory you are
running in allows for files to be created.
Cannot open universe log file
For a multi-partition run, the master log file cannot be opened. Check that the directory you are running in
allows for files to be created.
Cannot open universe screen file
For a multi-partition run, the master screen file cannot be opened. Check that the directory you are
running in allows for files to be created.
Cannot read from restart file - MPI error: %s
This error was generated by MPI when reading/writing an MPI-10 restart file.
Cannot read_data after simulation box is defined
The read_data command cannot be used after a read_data, read_restart, or create_box command.
Cannot read_restart after simulation box is defined
The read_restart command cannot be used after a read_data, read_restart, or create_box command.
Cannot redefine variable as a different style
An equal-style variable can be re-defined but only if it was originally an equal-style variable.
Cannot replicate 2d simulation in 7 dimension
The replicate command cannot replicate a 2d simulation in the z dimension.
Cannot replicate with fixes that store atom quantities
Either fixes are defined that create and store atom-based vectors or a restart file was read which included
atom-based vectors for fixes. The replicate command cannot duplicate that information for new atoms.
You should use the replicate command before fixes are applied to the system.
Cannot reset timestep with a dynamic region defined
Dynamic regions (see the region command) have a time dependence. Thus you cannot change the
timestep when one or more of these are defined.
Cannot reset timestep with a time-dependent fix defined
You cannot reset the timestep when a fix that keeps track of elapsed time is in place.
Cannot run 2d simulation with nonperiodic Z dimension
Use the boundary command to make the z dimension periodic in order to run a 2d simulation.
Cannot set bond topology types for atom style template
The bond, angle, etc types cannot be changed for this atom style since they are static settings in the
molecule template files.
Cannot set both respa pair and inner/middle/outer
In the rRESPA integrator, you must compute pairwise potentials either all together (pair), or in pieces
(inner/middle/outer). You can't do both.
Cannot set dump_modify flush for dump xtc
Self-explanatory.
Cannot set mass for this atom style
This atom style does not support mass settings for each atom type. Instead they are defined on a per-atom
basis in the data file.
Cannot set meso_rho for this atom style
Self-explanatory.
Cannot set non-zero image flag for non-periodic dimension
Self-explanatory.
Cannot set non-zero z velocity for 2d simulation
Self-explanatory.

136

Cannot set quaternion for atom that has none
Self-explanatory.
Cannot set respa middle without inner/outer
In the rRESPA integrator, you must define both a inner and outer setting in order to use a middle setting.
Cannot set restart file size - MPI error: %s
This error was generated by MPI when reading/writing an MPI-10 restart file.
Cannot set temperature for fix rigid/nph
The temp keyword cannot be specified.
Cannot set theta for atom that is not a line
Self-explanatory.
Cannot set this attribute for this atom style
The attribute being set does not exist for the defined atom style.
Cannot set variable z velocity for 2d simulation
Self-explanatory.
Cannot skew triclinic box in z for 2d simulation
Self-explanatory.
Cannot use -cuda on without USER-CUDA installed
The USER-CUDA package must be installed via "make yes-user-cuda" before LAMMPS is built.
Cannot use -reorder after -partition
Self-explanatory. See doc page discussion of command-line switches.
Cannot use Ewald with 2d simulation
The kspace style ewald cannot be used in 2d simulations. You can use 2d Ewald in a 3d simulation; see
the kspace_modify command.
Cannot use Ewald/disp solver on system with no charge, dipole, or LJ particles
No atoms in system have a non-zero charge or dipole, or are LJ particles. Change charges/dipoles or
change options of the kspace solver/pair style.
Cannot use EwaldDisp with 2d simulation
This is a current restriction of this command.
Cannot use NEB unless atom map exists
Use the atom_modify command to create an atom map.
Cannot use NEB with a single replica
Self-explanatory.
Cannot use NEB with atom_modify sort enabled
This is current restriction for NEB implemented in LAMMPS.
Cannot use PPPM with 2d simulation
The kspace style pppm cannot be used in 2d simulations. You can use 2d PPPM in a 3d simulation; see
the kspace_modify command.
Cannot use PPPMDisp with 2d simulation
The kspace style pppm/disp cannot be used in 2d simulations. You can use 2d pppm/disp in a 3d
simulation; see the kspace_modify command.
Cannot use PRD with a changing box
The current box dimensions are not copied between replicas
Cannot use PRD with a time-dependent fix defined
PRD alters the timestep in ways that will mess up these fixes.
Cannot use PRD with a time-dependent region defined
PRD alters the timestep in ways that will mess up these regions.
Cannot use PRD with atom_modify sort enabled
This is a current restriction of PRD. You must turn off sorting, which is enabled by default, via the
atom_modify command.
Cannot use PRD with multi-processor replicas unless atom map exists
Use the atom_modify command to create an atom map.
Cannot use TAD unless atom map exists for NEB

137

See atom_modify map command to set this.
Cannot use TAD with a single replica for NEB
NEB requires multiple replicas.
Cannot use TAD with atom_modify sort enabled for NEB
This is a current restriction of NEB.
Cannot use a damped dynamics min style with fix box/relax
This is a current restriction in LAMMPS. Use another minimizer style.
Cannot use a damped dynamics min style with per-atom DOF
This is a current restriction in LAMMPS. Use another minimizer style.
Cannot use append/atoms in periodic dimension
The boundary style of the face where atoms are added can not be of type p (periodic).
Cannot use atomfile-style variable unless atom map exists
Self-explanatory. See the atom_modify command to create a map.
Cannot use compute cluster/atom unless atoms have IDs
Atom IDs are used to identify clusters.
Cannot use cwiggle in variable formula between runs
This is a function of elapsed time.
Cannot use delete_atoms unless atoms have IDs
Your atoms do not have IDs, so the delete_atoms command cannot be used.
Cannot use delete_bonds with non-molecular system
Your choice of atom style does not have bonds.
Cannot use dump_modify fileper without % in dump file name
Self-explanatory.
Cannot use dump_modify nfile without % in dump file name
Self-explanatory.
Cannot use fix GPU with USER-CUDA mode enabled
You cannot use both the GPU and USER-CUDA packages together. Use one or the other.
Cannot use fix TMD unless atom map exists
Using this fix requires the ability to lookup an atom index, which is provided by an atom map. An atom
map does not exist (by default) for non-molecular problems. Using the atom_modify map command will
force an atom map to be created.
Cannot use fix ave/spatial 7 for 2 dimensional model
Self-explanatory.
Cannot use fix bond/break with non-molecular systems
Only systems with bonds that can be changed can be used. Atom_style template does not qualify.
Cannot use fix bond/create with non-molecular systems
Only systems with bonds that can be changed can be used. Atom_style template does not qualify.
Cannot use fix bond/swap with non-molecular systems
Only systems with bonds that can be changed can be used. Atom_style template does not qualify.
Cannot use fix box/relax on a 2nd non-periodic dimension
When specifying an off-diagonal pressure component, the 2nd of the two dimensions must be periodic.
E.g. if the xy component is specified, then the y dimension must be periodic.
Cannot use fix box/relax on a non-periodic dimension
When specifying a diagonal pressure component, the dimension must be periodic.
Cannot use fix box/relax with both relaxation and scaling on a tilt factor
When specifying scaling on a tilt factor component, that component can not also be controlled by the
barostat. E.g. if scalexy yes is specified and also keyword tri or Xy, this is wrong.
Cannot use fix box/relax with tilt factor scaling on a 2nd non-periodic dimension
When specifying scaling on a tilt factor component, the 2nd of the two dimensions must be periodic. E.g.
if the Xy component is specified, then the y dimension must be periodic.
Cannot use fix deform on a shrink-wrapped boundary
The x, y, z options cannot be applied to shrink-wrapped dimensions.

138

Cannot use fix deform tilt on a shrink-wrapped 2nd dim
This is because the shrink-wrapping will change the value of the strain implied by the tilt factor.
Cannot use fix deform trate on a box with zero tilt
The trate style alters the current strain.
Cannot use fix deposit rigid and not molecule
Self-explanatory.
Cannot use fix deposit rigid and shake
These two attributes are conflicting.
Cannot use fix deposit shake and not molecule
Self-explanatory.
Cannot use fix enforce2d with 3d simulation
Self-explanatory.
Cannot use fix gcmc in a 2d simulation
Fix gemce is set up to run in 3d only. No 2d simulations with fix gcmc are allowed.
Cannot use fix gcmc with a triclinic box
Fix gemc is set up to run with othogonal boxes only. Simulations with triclinic boxes and fix gecmc are not
allowed.
Cannot use fix msst without per-type mass defined
Self-explanatory.
Cannot use fix npt and fix deform on same component of stress tensor
This would be changing the same box dimension twice.
Cannot use fix nvt/npt/nph on a 2nd non-periodic dimension
When specifying an off-diagonal pressure component, the 2nd of the two dimensions must be periodic.
E.g. if the xy component is specified, then the y dimension must be periodic.
Cannot use fix nvt/npt/nph on a non-periodic dimension
When specifying a diagonal pressure component, the dimension must be periodic.
Cannot use fix nvt/npt/nph with both xy dynamics and xy scaling
Self-explanatory.
Cannot use fix nvt/npt/nph with both xz dynamics and xz scaling
Self-explanatory.
Cannot use fix nvt/npt/nph with both yz dynamics and yz scaling
Self-explanatory.
Cannot use fix nvt/npt/nph with xy scaling when y is non-periodic dimension
The 2nd dimension in the barostatted tilt factor must be periodic.
Cannot use fix nvt/npt/nph with xz scaling when 7 is non-periodic dimension
The 2nd dimension in the barostatted tilt factor must be periodic.
Cannot use fix nvt/npt/nph with yz scaling when 7 is non-periodic dimension
The 2nd dimension in the barostatted tilt factor must be periodic.
Cannot use fix pour rigid and not molecule
Self-explanatory.
Cannot use fix pour rigid and shake
These two attributes are conflicting.
Cannot use fix pour shake and not molecule
Self-explanatory.
Cannot use fix pour with triclinic box
This option is not yet supported.
Cannot use fix press/berendsen and fix deform on same component of stress tensor
These commands both change the box size/shape, so you cannot use both together.
Cannot use fix press/berendsen on a non-periodic dimension
Self-explanatory.
Cannot use fix press/berendsen with triclinic box
Self-explanatory.

139

Cannot use fix reax/bonds without pair_style reax
Self-explantory.
Cannot use fix rigid npt/nph and fix deform on same component of stress tensor
This would be changing the same box dimension twice.
Cannot use fix rigid npt/nph on a non-periodic dimension
When specifying a diagonal pressure component, the dimension must be periodic.
Cannot use fix shake with non-molecular system
Your choice of atom style does not have bonds.
Cannot use fix ttm with 2d simulation
This is a current restriction of this fix due to the grid it creates.
Cannot use fix ttm with triclinic box
This is a current restriction of this fix due to the grid it creates.
Cannot use fix tune/kspace without a kspace style
Self-explanatory.
Cannot use fix tune/kspace without a pair style
This fix (tune/kspace) can only be used when a pair style has been specified.
Cannot use fix wall in periodic dimension
Self-explanatory.
Cannot use fix wall zlo/zhi for a 2d simulation
Self-explanatory.
Cannot use fix wall/reflect in periodic dimension
Self-explanatory.
Cannot use fix wall/reflect zlo/zhi for a 2d simulation
Self-explanatory.
Cannot use fix wall/srd in periodic dimension
Self-explanatory.
Cannot use fix wall/srd more than once
Nor is their a need to since multiple walls can be specified in one command.
Cannot use fix wall/srd without fix srd
Self-explanatory.
Cannot use fix wall/srd zlo/zhi for a 2d simulation
Self-explanatory.
Cannot use fix_deposit unless atoms have IDs
Self-explanatory.
Cannot use fix_pour unless atoms have IDs
Self-explanatory.
Cannot use force/hybrid_neigh with triclinic box
Self-explanatory.
Cannot use force/neigh with triclinic box
This is a current limitation of the GPU implementation in LAMMPS.
Cannot use include command within an if command
Self-explanatory.
Cannot use kspace solver on system with no charge
No atoms in system have a non-zero charge.
Cannot use kspace solver with selected options on system with no charge
No atoms in system have a non-zero charge. Change charges or change options of the kspace solver/pair
style.
Cannot use lines with fix srd unless overlap is set
This is because line segements are connected to each other.
Cannot use multiple fix wall commands with pair brownian
Self-explanatory.
Cannot use multiple fix wall commands with pair lubricate

140

Self-explanatory.

Cannot use multiple fix wall commands with pair lubricate/poly
Self-explanatory.

Cannot use multiple fix wall commands with pair lubricateU
Self-explanatory.

Cannot use neigh_modify exclude with GPU neighbor builds
This is a current limitation of the GPU implementation in LAMMPS.

Cannot use neighbor bins - box size << cutoff
Too many neighbor bins will be created. This typically happens when the simulation box is very small in
some dimension, compared to the neighbor cutoff. Use the "nsq" style instead of "bin" style.

Cannot use newton pair with beck/gpu pair style
Self-explanatory.

Cannot use newton pair with born/coul/long/gpu pair style
Self-explanatory.

Cannot use newton pair with born/coul/wolf/gpu pair style
Self-explanatory.

Cannot use newton pair with born/gpu pair style
Self-explantory.

Cannot use newton pair with buck/coul/cut/gpu pair style
Self-explanatory.

Cannot use newton pair with buck/coul/long/gpu pair style
Self-explanatory.

Cannot use newton pair with buck/gpu pair style
Self-explanatory.

Cannot use newton pair with colloid/gpu pair style
Self-explanatory.

Cannot use newton pair with coul/dsf/gpu pair style
Self-explanatory.

Cannot use newton pair with coul/long/gpu pair style
Self-explanatory.

Cannot use newton pair with dipole/cut/gpu pair style
Self-explanatory.

Cannot use newton pair with eam/gpu pair style
Self-explanatory.

Cannot use newton pair with gauss/gpu pair style
Self-explanatory.

Cannot use newton pair with gayberne/gpu pair style
Self-explanatory.

Cannot use newton pair with lj/charmm/coul/long/gpu pair style
Self-explanatory.

Cannot use newton pair with lj/class2/coul/long/gpu pair style
Self-explanatory.

Cannot use newton pair with lj/class2/gpu pair style
Self-explanatory.

Cannot use newton pair with lj/cut/coul/cut/gpu pair style
Self-explanatory.

Cannot use newton pair with lj/cut/coul/debye/gpu pair style
Self-explanatory.

Cannot use newton pair with lj/cut/coul/dsf/gpu pair style
Self-explanatory.

Cannot use newton pair with lj/cut/coul/long/gpu pair style
Self-explanatory.

141

Cannot use newton pair with lj/cut/coul/msm/gpu pair style

Self-explanatory.

Cannot use newton pair with lj/cut/gpu pair style
Self-explanatory.

Cannot use newton pair with lj/expand/gpu pair style
Self-explanatory.

Cannot use newton pair with lj/gromacs/gpu pair style
Self-explanatory.

Cannot use newton pair with [j96/cut/gpu pair style
Self-explanatory.

Cannot use newton pair with mie/cut/gpu pair style
Self-explanatory.

Cannot use newton pair with morse/gpu pair style
Self-explanatory.

Cannot use newton pair with resquared/gpu pair style
Self-explanatory.

Cannot use newton pair with soft/gpu pair style
Self-explanatory.

Cannot use newton pair with table/gpu pair style
Self-explanatory.

Cannot use newton pair with yukawa/colloid/gpu pair style
Self-explanatory.

Cannot use newton pair with yukawa/gpu pair style
Self-explanatory.

Cannot use non-zero forces in an energy minimization

Fix setforce cannot be used in this manner. Use fix addforce instead.

Cannot use nonperiodic boundares with fix ttm
This fix requires a fully periodic simulation box.
Cannot use nonperiodic boundaries with Ewald

For kspace style ewald, all 3 dimensions must have periodic boundaries unless you use the
kspace_modify command to define a 2d slab with a non-periodic z dimension.

Cannot use nonperiodic boundaries with EwaldDisp

For kspace style ewald/disp, all 3 dimensions must have periodic boundaries unless you use the
kspace_modify command to define a 2d slab with a non-periodic z dimension.

Cannot use nonperiodic boundaries with PPPM

For kspace style pppm, all 3 dimensions must have periodic boundaries unless you use the kspace_modify

command to define a 2d slab with a non-periodic z dimension.

Cannot use nonperiodic boundaries with PPPMDisp

For kspace style pppm/disp, all 3 dimensions must have periodic boundaries unless you use the
kspace_modify command to define a 2d slab with a non-periodic z dimension.

Cannot use order greater than 8 with pppm/gpu.
Self-explanatory.
Cannot use pair hybrid with GPU neighbor list builds

Neighbor list builds must be done on the CPU for this pair style.

Cannot use pair tail corrections with 2d simulations

The correction factors are only currently defined for 3d systems.
Cannot use processors part command without using partitions

See the command-line -partition switch.
Cannot use ramp in variable formula between runs

This is because the ramp() function is time dependent.

Cannot use region INF or EDGE when box does not exist

Regions that extend to the box boundaries can only be used after the create_box command has been used.

142

Cannot use set atom with no atom IDs defined
Atom IDs are not defined, so they cannot be used to identify an atom.
Cannot use set mol with no molecule IDs defined
Self-explanatory.
Cannot use swiggle in variable formula between runs
This is a function of elapsed time.
Cannot use tris with fix srd unless overlap is set
This is because triangles are connected to each other.
Cannot use variable energy with constant efield in fix efield
LAMMPS computes the energy itself when the E-field is constant.
Cannot use variable energy with constant force in fix addforce
This is because for constant force, LAMMPS can compute the change in energy directly.
Cannot use variable every setting for dump dcd
The format of DCD dump files requires snapshots be output at a constant frequency.
Cannot use variable every setting for dump xtc
The format of this file requires snapshots at regular intervals.
Cannot use vdisplace in variable formula between runs
This is a function of elapsed time.
Cannot use velocity create loop all unless atoms have IDs

Atoms in the simulation to do not have IDs, so this style of velocity creation cannot be performed.

Cannot use wall in periodic dimension
Self-explanatory.
Cannot use write_restart fileper without % in restart file name
Self-explanatory.
Cannot use write_restart nfile without % in restart file name
Self-explanatory.
Cannot wiggle and shear fix wall/gran
Cannot specify both options at the same time.
Cannot write to restart file - MPI error: %s
This error was generated by MPI when reading/writing an MPI-10 restart file.
Cannot zero Langevin force of 0 atoms
The group has zero atoms, so you cannot request its force be zeroed.
Cannot zero gld force for zero atoms
There are no atoms currently in the group.
Cannot zero momentum of no atoms
Self-explanatory.
Change_box command before simulation box is defined
Self-explanatory.
Change_box volume used incorrectly

The "dim volume" option must be used immediately following one or two settings for "dim1 ..." (and

optionally "dim?2 ...") and must be for a different dimension, i.e. dim != dim1 and dim != dim?2.

Communicate group != atom_modify first group
Self-explanatory.

Compute ID for compute atom/molecule does not exist
Self-explanatory.

Compute ID for compute reduce does not exist
Self-explanatory.

Compute ID for compute slice does not exist
Self-explanatory.

Compute ID for fix ave/atom does not exist
Self-explanatory.

Compute ID for fix ave/correlate does not exist

143

Self-explanatory.

Compute ID for fix ave/histo does not exist
Self-explanatory.

Compute ID for fix ave/spatial does not exist
Self-explanatory.

Compute ID for fix ave/time does not exist
Self-explanatory.

Compute ID for fix store/state does not exist
Self-explanatory.

Compute ID must be alphanumeric or underscore characters
Self-explanatory.

Compute angle/local used when angles are not allowed
The atom style does not support angles.

Compute atom/molecule compute array is accessed out-of-range
Self-explanatory.

Compute atom/molecule compute does not calculate a per-atom array
Self-explanatory.

Compute atom/molecule compute does not calculate a per-atom vector
Self-explanatory.

Compute atom/molecule compute does not calculate per-atom values
Self-explanatory.

Compute atom/molecule fix array is accessed out-of-range
Self-explanatory.

Compute atom/molecule fix does not calculate a per-atom array
Self-explanatory.

Compute atom/molecule fix does not calculate a per-atom vector
Self-explanatory.

Compute atom/molecule fix does not calculate per-atom values
Self-explanatory.

Compute atom/molecule requires molecular atom style
Self-explanatory.

Compute atom/molecule variable is not atom-style variable
Self-explanatory.

Compute body/local requires atom style body
Self-explanatory.

Compute bond/local used when bonds are not allowed
The atom style does not support bonds.

Compute centro/atom requires a pair style be defined
This is because the computation of the centro-symmetry values uses a pairwise neighbor list.

Compute cluster/atom cutoff is longer than pairwise cutoff
Cannot identify clusters beyond cutoff.

Compute cluster/atom requires a pair style be defined
This is so that the pair style defines a cutoff distance which is used to find clusters.

Compute cna/atom cutoff is longer than pairwise cutoff
Self-explantory.

Compute cna/atom requires a pair style be defined
Self-explantory.

Compute com/molecule requires molecular atom style
Self-explanatory.

Compute contact/atom requires a pair style be defined
Self-explantory.

Compute contact/atom requires atom style sphere

144

Self-explanatory.
Compute coord/atom cutoff is longer than pairwise cutoff
Cannot compute coordination at distances longer than the pair cutoff, since those atoms are not in the
neighbor list.
Compute coord/atom requires a pair style be defined
Self-explantory.
Compute damage/atom requires peridynamic potential
Damage is a Peridynamic-specific metric. It requires you to be running a Peridynamics simulation.
Compute dihedral/local used when dihedrals are not allowed
The atom style does not support dihedrals.
Compute does not allow an extra compute or fix to be reset
This is an internal LAMMPS error. Please report it to the developers.
Compute erotate/asphere requires atom style ellipsoid or line or tri
Self-explanatory.
Compute erotate/asphere requires extended particles
This compute cannot be used with point paritlces.
Compute erotate/rigid with non-rigid fix-ID
Self-explanatory.
Compute erotate/sphere requires atom style sphere
Self-explanatory.
Compute erotate/sphere/atom requires atom style sphere
Self-explanatory.
Compute event/displace has invalid fix event assigned
This is an internal LAMMPS error. Please report it to the developers.
Compute group/group group ID does not exist
Self-explanatory.
Compute gyration/molecule requires molecular atom style
Self-explanatory.
Compute heat/flux compute ID does not compute ke/atom
Self-explanatory.
Compute heat/flux compute ID does not compute pe/atom
Self-explanatory.
Compute heat/flux compute ID does not compute stress/atom
Self-explanatory.
Compute improper/local used when impropers are not allowed
The atom style does not support impropers.
Compute inertia/molecule requires molecular atom style
Self-explanatory.
Compute ke/rigid with non-rigid fix-ID
Self-explanatory.
Compute msd/molecule requires molecular atom style
Self-explanatory.
Compute nve/asphere requires atom style ellipsoid
Self-explanatory.
Compute nvt/nph/npt asphere requires atom style ellipsoid
Self-explanatory.
Compute pair must use group all
Pair styles accumlate energy on all atoms.
Compute pe must use group all
Energies computed by potentials (pair, bond, etc) are computed on all atoms.
Compute pressure must use group all
Virial contributions computed by potentials (pair, bond, etc) are computed on all atoms.

145

Compute pressure temperature ID does not compute temperature

The compute ID assigned to a pressure computation must compute temperature.

Compute property/atom floating point vector does not exist

The command is accessing a vector added by the fix property/atom command, that does not exist.

Compute property/atom for atom property that isn't allocated
Self-explanatory.
Compute property/atom integer vector does not exist

The command is accessing a vector added by the fix property/atom command, that does not exist.

Compute property/local cannot use these inputs together

Only inputs that generate the same number of datums can be used togther. E.g. bond and angle quantities

cannot be mixed.

Compute property/local does not (yet) work with atom_style template
Self-explanatory.

Compute property/local for property that isn't allocated
Self-explanatory.

Compute property/molecule requires molecular atom style
Self-explanatory.

Compute rdf requires a pair style be defined
Self-explanatory.

Compute reduce compute array is accessed out-of-range
An index for the array is out of bounds.

Compute reduce compute calculates global values

A compute that calculates peratom or local values is required.

Compute reduce compute does not calculate a local array
Self-explanatory.

Compute reduce compute does not calculate a local vector
Self-explanatory.

Compute reduce compute does not calculate a per-atom array
Self-explanatory.

Compute reduce compute does not calculate a per-atom vector
Self-explanatory.

Compute reduce fix array is accessed out-of-range
An index for the array is out of bounds.

Compute reduce fix calculates global values
A fix that calculates peratom or local values is required.

Compute reduce fix does not calculate a local array
Self-explanatory.

Compute reduce fix does not calculate a local vector
Self-explanatory.

Compute reduce fix does not calculate a per-atom array
Self-explanatory.

Compute reduce fix does not calculate a per-atom vector
Self-explanatory.

Compute reduce replace requires min or max mode
Self-explanatory.

Compute reduce variable is not atom-style variable
Self-explanatory.

Compute slice compute array is accessed out-of-range
An index for the array is out of bounds.

Compute slice compute does not calculate a global array
Self-explanatory.

Compute slice compute does not calculate a global vector

146

Self-explanatory.
Compute slice compute does not calculate global vector or array
Self-explanatory.
Compute slice compute vector is accessed out-of-range
The index for the vector is out of bounds.
Compute slice fix array is accessed out-of-range
An index for the array is out of bounds.
Compute slice fix does not calculate a global array
Self-explanatory.
Compute slice fix does not calculate a global vector
Self-explanatory.
Compute slice fix does not calculate global vector or array
Self-explanatory.
Compute slice fix vector is accessed out-of-range
The index for the vector is out of bounds.
Compute temp/asphere requires atom style ellipsoid
Self-explanatory.
Compute temp/asphere requires extended particles
This compute cannot be used with point paritlces.
Compute temp/partial cannot use vz for 2d systemx
Self-explanatory.
Compute temp/profile cannot bin 7 for 2d systems
Self-explanatory.
Compute temp/profile cannot use vz for 2d systemx
Self-explanatory.
Compute temp/sphere requires atom style sphere
Self-explanatory.
Compute ti kspace style does not exist
Self-explanatory.
Compute ti pair style does not exist
Self-explanatory.
Compute ti tail when pair style does not compute tail corrections
Self-explanatory.
Compute used in variable between runs is not current
Computes cannot be invoked by a variable in between runs. Thus they must have been evaluated on the
last timestep of the previous run in order for their value(s) to be accessed. See the doc page for the
variable command for more info.
Compute used in variable thermo keyword between runs is not current
Some thermo keywords rely on a compute to calculate their value(s). Computes cannot be invoked by a
variable in between runs. Thus they must have been evaluated on the last timestep of the previous run in
order for their value(s) to be accessed. See the doc page for the variable command for more info.
Computed temperature for fix temp/berendsen cannot be 0.0
Self-explanatory.
Computed temperature for fix temp/rescale cannot be 0.0
Cannot rescale the temperature to a new value if the current temperature is 0.0.
Could not adjust g_ewald_6
The Newton-Raphson solver failed to converge to a good value for g_ewald. This error should not occur
for typical problems. Please send an email to the developers.
Could not compute g_ewald
The Newton-Raphson solver failed to converge to a good value for g_ewald. This error should not occur
for typical problems. Please send an email to the developers.
Could not compute grid size

147

The code is unable to compute a grid size consistent with the desired accuracy. This error should not
occur for typical problems. Please send an email to the developers.

Could not compute grid size for Coulomb interaction
The code is unable to compute a grid size consistent with the desired accuracy. This error should not
occur for typical problems. Please send an email to the developers.

Could not compute grid size for Dispersion
The code is unable to compute a grid size consistent with the desired accuracy. This error should not
occur for typical problems. Please send an email to the developers.

Could not count initial bonds in fix bond/create
Could not find one of the atoms in a bond on this processor.

Could not create 3d FFT plan
The FFT setup for the PPPM solver failed, typically due to lack of memory. This is an unusual error.
Check the size of the FFT grid you are requesting.

Could not create 3d grid of processors

The specified constraints did not allow a Px by Py by Pz grid to be created where Px * Py * Pz = P = total

number of processors.
Could not create 3d remap plan
The FFT setup in pppm failed.
Could not create numa grid of processors
The specified constraints did not allow this style of grid to be created. Usually this is because the total

processor count is not a multiple of the cores/node or the user specified processor count is > 1 in one of

the dimensions.

Could not create twolevel 3d grid of processors
The specified constraints did not allow this style of grid to be created.

Could not find atom_modify first group ID
Self-explanatory.

Could not find change_box group ID
Group ID used in the change_box command does not exist.

Could not find compute ID for PRD
Self-explanatory.

Could not find compute ID for TAD
Self-explanatory.

Could not find compute ID for temperature bias
Self-explanatory.

Could not find compute ID to delete
Self-explanatory.

Could not find compute displace/atom fix ID
Self-explanatory.

Could not find compute event/displace fix ID
Self-explanatory.

Could not find compute group ID
Self-explanatory.

Could not find compute heat/flux compute ID
Self-explanatory.

Could not find compute msd fix ID
Self-explanatory.

Could not find compute pressure temperature ID
The compute ID for calculating temperature does not exist.

Could not find compute vacf fix ID
Self-explanatory.

Could not find compute/voronoi surface group 1D
Self-explanatory.

148

Could not find compute_modify ID

Self-explanatory.
Could not find delete_atoms group ID

Group ID used in the delete_atoms command does not exist.
Could not find delete_atoms region ID

Region ID used in the delete_atoms command does not exist.
Could not find displace_atoms group 1D

Group ID used in the displace_atoms command does not exist.

Could not find dump custom compute 1D

Self-explanatory.
Could not find dump custom fix ID

Self-explanatory.
Could not find dump custom variable name

Self-explanatory.
Could not find dump group ID

A group ID used in the dump command does not exist.
Could not find dump local compute ID

Self-explanatory.
Could not find dump local fix ID

Self-explanatory.
Could not find dump modify compute ID

Self-explanatory.
Could not find dump modify fix ID

Self-explanatory.
Could not find dump modify variable name

Self-explanatory.
Could not find fix ID to delete

Self-explanatory.
Could not find fix gcmc rotation group 1D

Self-explanatory.
Could not find fix group ID

A group ID used in the fix command does not exist.
Could not find fix msst compute ID

Self-explanatory.
Could not find fix poems group 1D

A group ID used in the fix poems command does not exist.
Could not find fix recenter group ID

A group ID used in the fix recenter command does not exist.
Could not find fix rigid group ID

A group ID used in the fix rigid command does not exist.
Could not find fix srd group ID

Self-explanatory.
Could not find fix_modify 1D

A fix ID used in the fix_modify command does not exist.
Could not find fix_modify pressure ID

The compute ID for computing pressure does not exist.
Could not find fix_modify temperature ID

The compute ID for computing temperature does not exist.
Could not find group delete group ID

Self-explanatory.
Could not find set group ID

Group ID specified in set command does not exist.

149

Could not find thermo compute ID

Compute ID specified in thermo_style command does not exist.
Could not find thermo custom compute 1D

The compute ID needed by thermo style custom to compute a requested quantity does not exist.
Could not find thermo custom fix ID

The fix ID needed by thermo style custom to compute a requested quantity does not exist.
Could not find thermo custom variable name

Self-explanatory.
Could not find thermo fix ID

Fix ID specified in thermo_style command does not exist.
Could not find thermo variable name

Self-explanatory.
Could not find thermo_modify pressure 1D

The compute ID needed by thermo style custom to compute pressure does not exist.
Could not find thermo_modify temperature ID

The compute ID needed by thermo style custom to compute temperature does not exist.
Could not find undump 1D

A dump ID used in the undump command does not exist.
Could not find velocity group ID

A group ID used in the velocity command does not exist.
Could not find velocity temperature ID

The compute ID needed by the velocity command to compute temperature does not exist.
Could not find/initialize a specified accelerator device

Could not initialize at least one of the devices specified for the gpu package
Could not grab element entry from EIM potential file

Self-explanatory
Could not grab global entry from EIM potential file

Self-explanatory.
Could not grab pair entry from EIM potential file

Self-explanatory.
Coulomb PPPMDisp order has been reduced below minorder

The default minimum order is 2. This can be reset by the kspace_modify minorder command.
Coulomb cut not supported in pair_style buck/long/coul/coul

Must use long-range Coulombic interactions.
Coulomb cut not supported in pair_style lj/long/coul/long

Must use long-range Coulombic interactions.
Coulomb cut not supported in pair_style lj/long/tip4dp/long

Must use long-range Coulombic interactions.
Coulomb cutoffs of pair hybrid sub-styles do not match

If using a Kspace solver, all Coulomb cutoffs of long pair styles must be the same.
Coulombic cut not supported in pair_style lj/long/dipole/long

Must use long-range Coulombic interactions.
Cound not find dump_modify ID

Self-explanatory.
Create_atoms command before simulation box is defined

The create_atoms command cannot be used before a read_data, read_restart, or create_box command.
Create_atoms molecule has atom IDs, but system does not

The atom_style id command can be used to force atom IDs to be stored.
Create_atoms molecule must have atom types

The defined molecule does not specify atom types.
Create_atoms molecule must have coordinates

The defined molecule does not specify coordinates.

150

Create_atoms region ID does not exist
A region ID used in the create_atoms command does not exist.
Create_box region ID does not exist
Self-explanatory.
Create_box region does not support a bounding box
Not all regions represent bounded volumes. You cannot use such a region with the create_box command.
Cut-offs missing in pair_style lj/long/dipole/long
Self-explanatory.
Cutoffs missing in pair_style buck/long/coul/long
Self-exlanatory.
Cutoffs missing in pair_style lj/long/coul/long
Self-explanatory.
Cyclic loop in joint connections
Fix poems cannot (yet) work with coupled bodies whose joints connect the bodies in a ring (or cycle).
Degenerate lattice primitive vectors
Invalid set of 3 lattice vectors for lattice command.
Delete region ID does not exist
Self-explanatory.
Delete_atoms command before simulation box is defined
The delete_atoms command cannot be used before a read_data, read_restart, or create_box command.
Delete_atoms cutoff > neighbor cutoff
Cannot delete atoms further away than a processor knows about.
Delete_atoms requires a pair style be defined
This is because atom deletion within a cutoff uses a pairwise neighbor list.
Delete_bonds command before simulation box is defined
The delete_bonds command cannot be used before a read_data, read_restart, or create_box command.
Delete_bonds command with no atoms existing
No atoms are yet defined so the delete_bonds command cannot be used.
Deposition region extends outside simulation box
Self-explanatory.
Did not assign all atoms correctly
Atoms read in from a data file were not assigned correctly to processors. This is likely due to some atom
coordinates being outside a non-periodic simulation box.
Did not find all elements in MEAM library file
The requested elements were not found in the MEAM file.
Did not find fix shake partner info
Could not find bond partners implied by fix shake command. This error can be triggered if the
delete_bonds command was used before fix shake, and it removed bonds without resetting the 1-2, 1-3,
1-4 weighting list via the special keyword.
Did not find keyword in table file
Keyword used in pair_coeff command was not found in table file.
Did not set pressure for fix rigid/nph
The press keyword must be specified.
Did not set temperature for fix rigid/nvt
The temp keyword must be specified.
Did not set temperature or pressure for fix rigid/npt
The temp and press keywords must be specified.
Dihedral atom missing in delete_bonds
The delete_bonds command cannot find one or more atoms in a particular dihedral on a particular
processor. The pairwise cutoff is too short or the atoms are too far apart to make a valid dihedral.
Dihedral atom missing in set command
The set command cannot find one or more atoms in a particular dihedral on a particular processor. The

151

pairwise cutoff is too short or the atoms are too far apart to make a valid dihedral.
Dihedral atoms %d %d %d Yod missing on proc %d at step %ld
One or more of 4 atoms needed to compute a particular dihedral are missing on this processor. Typically
this is because the pairwise cutoff is set too short or the dihedral has blown apart and an atom is too far
away.
Dihedral charmm is incompatible with Pair style
Dihedral style charmm must be used with a pair style charmm in order for the 1-4 epsilon/sigma
parameters to be defined.
Dihedral coeff for hybrid has invalid style
Dihedral style hybrid uses another dihedral style as one of its coefficients. The dihedral style used in the
dihedral_coeff command or read from a restart file is not recognized.
Dihedral coeffs are not set
No dihedral coefficients have been assigned in the data file or via the dihedral_coeff command.
Dihedral style hybrid cannot have hybrid as an argument
Self-explanatory.
Dihedral style hybrid cannot have none as an argument
Self-explanatory.
Dihedral style hybrid cannot use same dihedral style twice
Self-explanatory.
Dihedral/improper extent > half of periodic box length
This error was detected by the neigh_modify check yes setting. It is an error because the dihedral atoms
are so far apart it is ambiguous how it should be defined.
Dihedral_coeff command before dihedral_style is defined
Coefficients cannot be set in the data file or via the dihedral_coeff command until an dihedral_style has
been assigned.
Dihedral_coeff command before simulation box is defined
The dihedral_coeff command cannot be used before a read_data, read_restart, or create_box command.
Dihedral_coeff command when no dihedrals allowed
The chosen atom style does not allow for dihedrals to be defined.
Dihedral_style command when no dihedrals allowed
The chosen atom style does not allow for dihedrals to be defined.
Dihedrals assigned incorrectly
Dihedrals read in from the data file were not assigned correctly to atoms. This means there is something
invalid about the topology definitions.
Dihedrals defined but no dihedral types
The data file header lists dihedrals but no dihedral types.
Dimension command after simulation box is defined
The dimension command cannot be used after a read_data, read_restart, or create_box command.
Dispersion PPPMDisp order has been reduced below minorder
The default minimum order is 2. This can be reset by the kspace_modify minorder command.
Displace_atoms command before simulation box is defined
The displace_atoms command cannot be used before a read_data, read_restart, or create_box command.
Distance must be > 0 for compute event/displace
Self-explanatory.
Divide by 0 in influence function of pair peri/lps
This should not normally occur. It is likely a problem with your model.
Divide by 0 in variable formula
Self-explanatory.
Domain too large for neighbor bins
The domain has become extremely large so that neighbor bins cannot be used. Most likely, one or more
atoms have been blown out of the simulation box to a great distance.
Double precision is not supported on this accelerator

152

Self-explanatory
Dump cfg arguments can not mix xslyslzs with xsulysulzsu
Self-explanatory.
Dump cfg arguments must start with 'mass type xs ys zs' or 'mass type xsu ysu zsu'
This is a requirement of the CFG output format. See the dump cfg doc page for more details.
Dump cfg requires one snapshot per file
Use the wildcard "*" character in the filename.
Dump custom and fix not computed at compatible times
The fix must produce per-atom quantities on timesteps that dump custom needs them.
Dump custom compute does not calculate per-atom array
Self-explanatory.
Dump custom compute does not calculate per-atom vector
Self-explanatory.
Dump custom compute does not compute per-atom info
Self-explanatory.
Dump custom compute vector is accessed out-of-range
Self-explanatory.
Dump custom fix does not compute per-atom array
Self-explanatory.
Dump custom fix does not compute per-atom info
Self-explanatory.
Dump custom fix does not compute per-atom vector
Self-explanatory.
Dump custom fix vector is accessed out-of-range
Self-explanatory.
Dump custom variable is not atom-style variable
Only atom-style variables generate per-atom quantities, needed for dump output.
Dump dcd of non-matching # of atoms
Every snapshot written by dump dcd must contain the same # of atoms.
Dump dcd requires sorting by atom ID
Use the dump_modify sort command to enable this.
Dump every variable returned a bad timestep
The variable must return a timestep greater than the current timestep.
Dump file MPI-10 output not allowed with % in filename
This is because a % signifies one file per processor and MPI-IO creates one large file for all processors.
Dump file does not contain requested snapshot
Self-explanatory.
Dump file is incorrectly formatted
Self-explanatory.
Dump image bond not allowed with no bond types
Self-explanatory.
Dump image cannot perform sorting
Self-explanatory.
Dump image persp option is not yet supported
Self-explanatory.
Dump image requires one snapshot per file
Use a "*" in the filename.
Dump local and fix not computed at compatible times
The fix must produce per-atom quantities on timesteps that dump local needs them.
Dump local attributes contain no compute or fix
Self-explanatory.
Dump local cannot sort by atom ID

153

This is because dump local does not really dump per-atom info.

Dump local compute does not calculate local array
Self-explanatory.

Dump local compute does not calculate local vector
Self-explanatory.

Dump local compute does not compute local info
Self-explanatory.

Dump local compute vector is accessed out-of-range
Self-explanatory.

Dump local count is not consistent across input fields
Every column of output must be the same length.

Dump local fix does not compute local array
Self-explanatory.

Dump local fix does not compute local info
Self-explanatory.

Dump local fix does not compute local vector
Self-explanatory.

Dump local fix vector is accessed out-of-range
Self-explanatory.

Dump modify bcolor not allowed with no bond types
Self-explanatory.

Dump modify bdiam not allowed with no bond types
Self-explanatory.

Dump modify compute ID does not compute per-atom array
Self-explanatory.

Dump modify compute ID does not compute per-atom info
Self-explanatory.

Dump modify compute ID does not compute per-atom vector
Self-explanatory.

Dump modify compute ID vector is not large enough
Self-explanatory.

Dump modify element names do not match atom types
Number of element names must equal number of atom types.

Dump modify fix ID does not compute per-atom array
Self-explanatory.

Dump modify fix ID does not compute per-atom info
Self-explanatory.

Dump modify fix ID does not compute per-atom vector
Self-explanatory.

Dump modify fix ID vector is not large enough
Self-explanatory.

Dump modify variable is not atom-style variable
Self-explanatory.

Dump sort column is invalid
Self-explanatory.

Dump xtc requires sorting by atom ID
Use the dump_modify sort command to enable this.

Dump_modify buffer yes not allowed for this style
Self-explanatory.

Dump_modify format string is too short
There are more fields to be dumped in a line of output than your format string specifies.

Dump_modify region ID does not exist

154

Self-explanatory.
Dumping an atom property that isn't allocated
The chosen atom style does not define the per-atom quantity being dumped.
Dumping an atom quantity that isn't allocated
Only per-atom quantities that are defined for the atom style being used are allowed.
Duplicate fields in read_dump command
Self-explanatory.
Duplicate particle in PeriDynamic bond - simulation box is too small
This is likely because your box length is shorter than 2 times the bond length.
Electronic temperature dropped below zero
Something has gone wrong with the fix ttm electron temperature model.
Empty brackets in variable
There is no variable syntax that uses empty brackets. Check the variable doc page.
Energy was not tallied on needed timestep
You are using a thermo keyword that requires potentials to have tallied energy, but they didn't on this
timestep. See the variable doc page for ideas on how to make this work.
Epsilon or sigma reference not set by pair style in PPPMDisp
Self-explanatory.
Epsilon or sigma reference not set by pair style in ewald/n
The pair style is not providing the needed epsilon or sigma values.
Error in vdw spline: inner radius > outer radius
Self-explanatory.
Expected floating point parameter in variable definition
The quantity being read is a non-numeric value.
Expected integer parameter in variable definition
The quantity being read is a floating point or non-numeric value.
Failed to allocate %ld bytes for array %s
Your LAMMPS simulation has run out of memory. You need to run a smaller simulation or on more
processors.
Failed to open FFmpeg pipeline to file %s
The specified file cannot be opened. Check that the path and name are correct and writable and that the
FFmpeg executable can be found and run.
Failed to reallocate %ld bytes for array %s
Your LAMMPS simulation has run out of memory. You need to run a smaller simulation or on more
processors.
Fewer SRD bins than processors in some dimension
This is not allowed. Make your SRD bin size smaller.
File variable could not read value
Check the file assigned to the variable.
Final box dimension due to fix deform is < 0.0
Self-explanatory.
Fix ID for compute atom/molecule does not exist
Self-explanatory.
Fix ID for compute erotate/rigid does not exist
Self-explanatory.
Fix ID for compute ke/rigid does not exist
Self-explanatory.
Fix ID for compute reduce does not exist
Self-explanatory.
Fix ID for compute slice does not exist
Self-explanatory.
Fix ID for fix ave/atom does not exist

155

Self-explanatory.
Fix ID for fix ave/correlate does not exist
Self-explanatory.
Fix ID for fix ave/histo does not exist
Self-explanatory.
Fix ID for fix ave/spatial does not exist
Self-explanatory.
Fix ID for fix ave/time does not exist
Self-explanatory.
Fix ID for fix store/state does not exist
Self-explanatory
Fix ID for read_data does not exist
Self-explanatory.
Fix ID for velocity does not exist
Self-explanatory.
Fix ID must be alphanumeric or underscore characters
Self-explanatory.
Fix SRD no-slip requires atom attribute torque
This is because the SRD collisions will impart torque to the solute particles.
Fix SRD: bad bin assignment for SRD advection
Something has gone wrong in your SRD model; try using more conservative settings.
Fix SRD: bad search bin assignment
Something has gone wrong in your SRD model; try using more conservative settings.
Fix SRD: bad stencil bin for big particle
Something has gone wrong in your SRD model; try using more conservative settings.
Fix SRD: too many big particles in bin
Reset the ATOMPERBIN parameter at the top of fix_srd.cpp to a larger value, and re-compile the code.
Fix SRD: too many walls in bin
This should not happen unless your system has been setup incorrectly.
Fix adapt kspace style does not exist
Self-explanatory.
Fix adapt pair style does not exist
Self-explanatory
Fix adapt pair style param not supported
The pair style does not know about the parameter you specified.
Fix adapt requires atom attribute charge
The atom style being used does not specify an atom charge.
Fix adapt requires atom attribute diameter
The atom style being used does not specify an atom diameter.
Fix adapt type pair range is not valid for pair hybrid sub-style
Self-explanatory.
Fix append/atoms requires a lattice be defined
Use the lattice command for this purpose.
Fix ave/atom compute array is accessed out-of-range
Self-explanatory.
Fix ave/atom compute does not calculate a per-atom array
Self-explanatory.
Fix ave/atom compute does not calculate a per-atom vector
A compute used by fix ave/atom must generate per-atom values.
Fix ave/atom compute does not calculate per-atom values
A compute used by fix ave/atom must generate per-atom values.
Fix ave/atom fix array is accessed out-of-range

156

Self-explanatory.
Fix ave/atom fix does not calculate a per-atom array
Self-explanatory.
Fix ave/atom fix does not calculate a per-atom vector
A fix used by fix ave/atom must generate per-atom values.
Fix ave/atom fix does not calculate per-atom values
A fix used by fix ave/atom must generate per-atom values.
Fix ave/atom missed timestep

You cannot reset the timestep to a value beyond where the fix expects to next perform averaging.

Fix ave/atom variable is not atom-style variable
A variable used by fix ave/atom must generate per-atom values.

Fix ave/correlate compute does not calculate a scalar
Self-explanatory.

Fix ave/correlate compute does not calculate a vector
Self-explanatory.

Fix ave/correlate compute vector is accessed out-of-range
The index for the vector is out of bounds.

Fix ave/correlate fix does not calculate a scalar
Self-explanatory.

Fix ave/correlate fix does not calculate a vector
Self-explanatory.

Fix ave/correlate fix vector is accessed out-of-range
The index for the vector is out of bounds.

Fix ave/correlate missed timestep

You cannot reset the timestep to a value beyond where the fix expects to next perform averaging.

Fix ave/correlate variable is not equal-style variable

Self-explanatory.

Fix ave/histo cannot input local values in scalar mode
Self-explanatory.

Fix ave/histo cannot input per-atom values in scalar mode
Self-explanatory.

Fix ave/histo compute array is accessed out-of-range
Self-explanatory.

Fix ave/histo compute does not calculate a global array
Self-explanatory.

Fix ave/histo compute does not calculate a global scalar
Self-explanatory.

Fix ave/histo compute does not calculate a global vector
Self-explanatory.

Fix ave/histo compute does not calculate a local array
Self-explanatory.

Fix ave/histo compute does not calculate a local vector
Self-explanatory.

Fix ave/histo compute does not calculate a per-atom array
Self-explanatory.

Fix ave/histo compute does not calculate a per-atom vector
Self-explanatory.

Fix ave/histo compute does not calculate local values
Self-explanatory.

Fix ave/histo compute does not calculate per-atom values
Self-explanatory.

Fix ave/histo compute vector is accessed out-of-range

157

Self-explanatory.

Fix ave/histo fix array is accessed out-of-range
Self-explanatory.

Fix ave/histo fix does not calculate a global array
Self-explanatory.

Fix ave/histo fix does not calculate a global scalar
Self-explanatory.

Fix ave/histo fix does not calculate a global vector
Self-explanatory.

Fix ave/histo fix does not calculate a local array
Self-explanatory.

Fix ave/histo fix does not calculate a local vector
Self-explanatory.

Fix ave/histo fix does not calculate a per-atom array
Self-explanatory.

Fix ave/histo fix does not calculate a per-atom vector
Self-explanatory.

Fix ave/histo fix does not calculate local values
Self-explanatory.

Fix ave/histo fix does not calculate per-atom values
Self-explanatory.

Fix ave/histo fix vector is accessed out-of-range
Self-explanatory.

Fix ave/histo input is invalid compute
Self-explanatory.

Fix ave/histo input is invalid fix
Self-explanatory.

Fix ave/histo input is invalid variable
Self-explanatory.

Fix ave/histo inputs are not all global, peratom, or local
All inputs in a single fix ave/histo command must be of the same style.

Fix ave/histo missed timestep

You cannot reset the timestep to a value beyond where the fix expects to next perform averaging.

Fix ave/spatial compute does not calculate a per-atom array
Self-explanatory.
Fix ave/spatial compute does not calculate a per-atom vector
A compute used by fix ave/spatial must generate per-atom values.
Fix ave/spatial compute does not calculate per-atom values
A compute used by fix ave/spatial must generate per-atom values.
Fix ave/spatial compute vector is accessed out-of-range
The index for the vector is out of bounds.
Fix ave/spatial fix does not calculate a per-atom array
Self-explanatory.
Fix ave/spatial fix does not calculate a per-atom vector
A fix used by fix ave/spatial must generate per-atom values.
Fix ave/spatial fix does not calculate per-atom values
A fix used by fix ave/spatial must generate per-atom values.
Fix ave/spatial fix vector is accessed out-of-range
The index for the vector is out of bounds.
Fix ave/spatial for triclinic boxes requires units reduced
Self-explanatory.
Fix ave/spatial missed timestep

158

You cannot reset the timestep to a value beyond where the fix expects to next perform averaging.
Fix ave/spatial settings invalid with changing box size

If the box size changes, only the units reduced option can be used.
Fix ave/spatial variable is not atom-style variable

A variable used by fix ave/spatial must generate per-atom values.
Fix ave/time cannot set output array intensive/extensive from these inputs

One of more of the vector inputs has individual elements which are flagged as intensive or extensive.

Such an input cannot be flagged as all intensive/extensive when turned into an array by fix ave/time.
Fix ave/time cannot use variable with vector mode
Variables produce scalar values.
Fix ave/time columns are inconsistent lengths
Self-explanatory.
Fix ave/time compute array is accessed out-of-range
An index for the array is out of bounds.
Fix ave/time compute does not calculate a scalar
Self-explantory.
Fix ave/time compute does not calculate a vector
Self-explantory.
Fix ave/time compute does not calculate an array
Self-explanatory.
Fix ave/time compute vector is accessed out-of-range
The index for the vector is out of bounds.
Fix ave/time fix array is accessed out-of-range
An index for the array is out of bounds.
Fix ave/time fix does not calculate a scalar
Self-explanatory.
Fix ave/time fix does not calculate a vector
Self-explanatory.
Fix ave/time fix does not calculate an array
Self-explanatory.
Fix ave/time fix vector is accessed out-of-range
The index for the vector is out of bounds.
Fix ave/time missed timestep
You cannot reset the timestep to a value beyond where the fix expects to next perform averaging.
Fix ave/time variable is not equal-style variable
Self-explanatory.
Fix balance string is invalid
The string can only contain the characters "x", "y", or "z".
Fix balance string is invalid for 2d simulation
The string cannot contain the letter "z".
Fix bond/break requires special_bonds = 0,1,1
This is a restriction of the current fix bond/break implementation.
Fix bond/create cutoff is longer than pairwise cutoff
This is not allowed because bond creation is done using the pairwise neighbor list.
Fix bond/create requires special_bonds coul = 0,1,1
Self-explanatory.
Fix bond/create requires special_bonds lj = 0,1,1
Self-explanatory.
Fix bond/swap cannot use dihedral or improper styles
These styles cannot be defined when using this fix.
Fix bond/swap requires pair and bond styles
Self-explanatory.

159

Fix bond/swap requires special_bonds = 0,1,1
Self-explanatory.
Fix box/relax generated negative box length
The pressure being applied is likely too large. Try applying it incrementally, to build to the high pressure.
Fix command before simulation box is defined
The fix command cannot be used before a read_data, read_restart, or create_box command.
Fix deform cannot use yz variable with xy
The yz setting cannot be a variable if xy deformation is also specified. This is because LAMMPS cannot
determine if the yz setting will induce a box flip which would be invalid if xy is also changing.
Fix deform is changing yz too much with xy
When both yz and xy are changing, it induces changes in xz if the box must flip from one tilt extreme to
another. Thus it is not allowed for yz to grow so much that a flip is induced.
Fix deform tilt factors require triclinic box
Cannot deform the tilt factors of a simulation box unless it is a triclinic (non-orthogonal) box.
Fix deform volume setting is invalid
Cannot use volume style unless other dimensions are being controlled.
Fix deposit and fix rigid/small not using same molecule template ID
Self-explanatory.
Fix deposit and fix shake not using same molecule template 1D
Self-explanatory.
Fix deposit molecule must have atom types
The defined molecule does not specify atom types.
Fix deposit molecule must have coordinates
The defined molecule does not specify coordinates.
Fix deposit molecule template ID must be same as atom_style template 1D
When using atom_style template, you cannot deposit molecules that are not in that template.
Fix deposit region cannot be dynamic
Only static regions can be used with fix deposit.
Fix deposit region does not support a bounding box
Not all regions represent bounded volumes. You cannot use such a region with the fix deposit command.
Fix deposit shake fix does not exist
Self-explanatory.
Fix efield requires atom attribute q or mu
The atom style defined does not have this attribute.
Fix efield with dipoles cannot use atom-style variables
This option is not supported.
Fix evaporate molecule requires atom attribute molecule
The atom style being used does not define a molecule ID.
Fix external callback function not set
This must be done by an external program in order to use this fix.
Fix for fix ave/atom not computed at compatible time
Fixes generate their values on specific timesteps. Fix ave/atom is requesting a value on a non-allowed
timestep.
Fix for fix ave/correlate not computed at compatible time
Fixes generate their values on specific timesteps. Fix ave/correlate is requesting a value on a non-allowed
timestep.
Fix for fix ave/histo not computed at compatible time
Fixes generate their values on specific timesteps. Fix ave/histo is requesting a value on a non-allowed
timestep.
Fix for fix ave/spatial not computed at compatible time
Fixes generate their values on specific timesteps. Fix ave/spatial is requesting a value on a non-allowed
timestep.

160

Fix for fix ave/time not computed at compatible time
Fixes generate their values on specific timesteps. Fix ave/time is requesting a value on a non-allowed
timestep.
Fix for fix store/state not computed at compatible time
Fixes generate their values on specific timesteps. Fix store/state is requesting a value on a non-allowed
timestep.
Fix freeze requires atom attribute torque
The atom style defined does not have this attribute.
Fix gemce cannot exchange individual atoms belonging to a molecule
This is an error since you should not delete only one atom of a molecule. The user has specified atomic
(non-molecular) gas exchanges, but an atom belonging to a molecule could be deleted.
Fix gcmc could not find any atoms in the user-supplied template molecule
When using the molecule option with fix gcmc, the user must supply a template molecule in the usual
LAMMPS data file with its molecule id specified in the fix gcmc command as the "type" of the
exchanged gas.
Fix gemc does not (yet) work with atom_style template
Self-explanatory.
Fix gemc incompatible with given pair_style
Some pair_styles do not provide single-atom energies, which are needed by fix gcmc.
Fix gcmc incorrect number of atoms per molecule
The number of atoms in each gas molecule was not computed correctly.
Fix gcmc molecule command requires that atoms have molecule attributes
Should not choose the GCMC molecule feature if no molecules are being simulated. The general
molecule flag is off, but GCMC's molecule flag is on.
Fix gcmc ran out of available molecule IDs
See the setting for tagint in the src/lmptype.h file.
Fix gcmc region cannot be dynamic
Only static regions can be used with fix gemc.
Fix gcmc region does not support a bounding box
Not all regions represent bounded volumes. You cannot use such a region with the fix gcmc command.
Fix gcmc region extends outside simulation box

Self-explanatory.

Fix gld c coefficients must be >= 0
Self-explanatory.

Fix gld needs more prony series coefficients
Self-explanatory.

Fix gld prony terms must be > 0
Self-explanatory.

Fix gld series type must be pprony for now
Self-explanatory.

Fix gld start temperature must be >= 0
Self-explanatory.

Fix gld stop temperature must be >= 0
Self-explanatory.

Fix gld tau coefficients must be > 0
Self-explanatory.

Fix heat group has no atoms
Self-explanatory.

Fix heat kinetic energy of an atom went negative

This will cause the velocity rescaling about to be performed by fix heat to be invalid.
Fix heat kinetic energy went negative

This will cause the velocity rescaling about to be performed by fix heat to be invalid.

161

Fix in variable not computed at compatible time

Fixes generate their values on specific timesteps. The variable is requesting the values on a non-allowed

timestep.
Fix langevin angmom requires atom style ellipsoid
Self-explanatory.
Fix langevin angmom requires extended particles
This fix option cannot be used with point paritlces.
Fix langevin omega requires atom style sphere
Self-explanatory.
Fix langevin omega requires extended particles
One of the particles has radius 0.0.
Fix langevin period must be > 0.0
The time window for temperature relaxation must be > 0
Fix langevin variable returned negative temperature

Self-explanatory.

Fix momentum group has no atoms
Self-explanatory.

Fix move cannot define z or vz variable for 2d problem
Self-explanatory.

Fix move cannot rotate aroung non z-axis for 2d problem
Self-explanatory.

Fix move cannot set linear z motion for 2d problem
Self-explanatory.

Fix move cannot set wiggle 7 motion for 2d problem
Self-explanatory.

Fix msst compute ID does not compute potential energy
Self-explanatory.

Fix msst compute ID does not compute pressure
Self-explanatory.

Fix msst compute ID does not compute temperature
Self-explanatory.

Fix msst requires a periodic box
Self-explanatory.

Fix msst tscale must satisfy 0 <= tscale < 1
Self-explanatory.

Fix npt/nph has tilted box too far in one step - periodic cell is too far from equilibrium state
Self-explanatory. The change in the box tilt is too extreme on a short timescale.
Fix nve/asphere requires extended particles
This fix can only be used for particles with a shape setting.
Fix nve/asphere/noforce requires atom style ellipsoid
Self-explanatory.
Fix nve/asphere/noforce requires extended particles
One of the particles is not an ellipsoid.
Fix nve/body requires atom style body
Self-explanatory.
Fix nve/body requires bodies
This fix can only be used for particles that are bodies.
Fix nve/line can only be used for 2d simulations
Self-explanatory.
Fix nve/line requires atom style line
Self-explanatory.
Fix nve/line requires line particles

162

Self-explanatory.
Fix nve/sphere requires atom attribute mu
An atom style with this attribute is needed.
Fix nve/sphere requires atom style sphere
Self-explanatory.
Fix nve/sphere requires extended particles
This fix can only be used for particles of a finite size.
Fix nve/tri can only be used for 3d simulations
Self-explanatory.
Fix nve/tri requires atom style tri
Self-explanatory.
Fix nve/tri requires tri particles
Self-explanatory.
Fix nvt/nph/npt asphere requires extended particles
The shape setting for a particle in the fix group has shape = 0.0, which means it is a point particle.
Fix nvt/nph/npt sphere requires atom style sphere
Self-explanatory.
Fix nvt/npt/nph damping parameters must be > 0.0
Self-explanatory.
Fix nvt/npt/nph dilate group ID does not exist
Self-explanatory.
Fix nvt/sphere requires extended particles
This fix can only be used for particles of a finite size.
Fix orient/fcc file open failed
The fix orient/fcc command could not open a specified file.
Fix orient/fcc file read failed
The fix orient/fcc command could not read the needed parameters from a specified file.
Fix orient/fcc found self twice
The neighbor lists used by fix orient/fcc are messed up. If this error occurs, it is likely a bug, so send an
email to the developers.
Fix peri neigh does not exist
Somehow a fix that the pair style defines has been deleted.
Fix pour and fix rigid/small not using same molecule template ID
Self-explanatory.
Fix pour and fix shake not using same molecule template ID
Self-explanatory.
Fix pour molecule must have atom types
The defined molecule does not specify atom types.
Fix pour molecule must have coordinates
The defined molecule does not specify coordinates.
Fix pour molecule template ID must be same as atom style template ID
When using atom_style template, you cannot pour molecules that are not in that template.
Fix pour polydisperse fractions do not sum to 1.0
Self-explanatory.
Fix pour region ID does not exist
Self-explanatory.
Fix pour region cannot be dynamic
Only static regions can be used with fix pour.
Fix pour region does not support a bounding box
Not all regions represent bounded volumes. You cannot use such a region with the fix pour command.
Fix pour requires atom attributes radius, rmass
The atom style defined does not have these attributes.

163

http://lammps.sandia.gov/authors.html

Fix pour rigid fix does not exist
Self-explanatory.
Fix pour shake fix does not exist
Self-explanatory.
Fix press/berendsen damping parameters must be > 0.0
Self-explanatory.
Fix property/atom cannot specify mol twice
Self-explanatory.
Fix property/atom cannot specify q twice
Self-explanatory.
Fix property/atom mol when atom_style already has molecule attribute
Self-explanatory.
Fix property/atom q when atom_style already has charge attribute
Self-explanatory.
Fix property/atom vector name already exists
The name for an integer or floating-point vector must be unique.
Fix geq/comb group has no atoms
Self-explanatory.
Fix geq/comb requires atom attribute q
An atom style with charge must be used to perform charge equilibration.
Fix reax/bonds numbonds > nsbmax_most

The limit of the number of bonds expected by the ReaxFF force field was exceeded.

Fix recenter group has no atoms
Self-explanatory.

Fix restrain requires an atom map, see atom_modify
Self-explanatory.

Fix rigid atom has non-zero image flag in a non-periodic dimension
Image flags for non-periodic dimensions should not be set.

Fix rigid file has no lines
Self-explanatory.

Fix rigid langevin period must be > 0.0
Self-explanatory.

Fix rigid molecule requires atom attribute molecule
Self-explanatory.

Fix rigid npt/nph dilate group ID does not exist
Self-explanatory.

Fix rigid npt/nph does not yet allow triclinic box
Self-explanatory.

Fix rigid npt/nph period must be > 0.0
Self-explanatory.

Fix rigid nvt/npt/nph damping parameters must be > 0.0
Self-explanatory.

Fix rigid xy torque cannot be on for 2d simulation
Self-explanatory.

Fix rigid z force cannot be on for 2d simulation
Self-explanatory.

Fix rigid/npt period must be > 0.0
Self-explanatory.

Fix rigid/npt temperature order must be 3 or 5
Self-explanatory.

Fix rigid/nvt period must be > 0.0
Self-explanatory.

164

Fix rigid/nvt temperature order must be 3 or 5
Self-explanatory.
Fix rigid/small atom has non-zero image flag in a non-periodic dimension
Image flags for non-periodic dimensions should not be set.
Fix rigid/small langevin period must be > 0.0
Self-explanatory.
Fix rigid/small molecule must have atom types
The defined molecule does not specify atom types.
Fix rigid/small molecule must have coordinates
The defined molecule does not specify coordinates.
Fix rigid/small requires an atom map, see atom_modify
Self-explanatory.
Fix rigid/small requires atom attribute molecule
Self-explanatory.
Fix rigid: Bad principal moments

The principal moments of inertia computed for a rigid body are not within the required tolerances.

Fix shake cannot be used with minimization

Cannot use fix shake while doing an energy minimization since it turns off bonds that should contribute to

the energy.
Fix shake molecule template must have shake info
The defined molecule does not specify SHAKE information.
Fix spring couple group ID does not exist
Self-explanatory.
Fix srd lamda must be >= 0.6 of SRD grid size
This is a requirement for accuracy reasons.
Fix srd requires SRD particles all have same mass
Self-explanatory.
Fix srd requires ghost atoms store velocity
Use the communicate vel yes command to enable this.
Fix srd requires newton pair on
Self-explanatory.
Fix store/state compute array is accessed out-of-range
Self-explanatory.
Fix store/state compute does not calculate a per-atom array
The compute calculates a per-atom vector.
Fix store/state compute does not calculate a per-atom vector
The compute calculates a per-atom vector.
Fix store/state compute does not calculate per-atom values

Computes that calculate global or local quantities cannot be used with fix store/state.

Fix store/state fix array is accessed out-of-range
Self-explanatory.

Fix store/state fix does not calculate a per-atom array
The fix calculates a per-atom vector.

Fix store/state fix does not calculate a per-atom vector
The fix calculates a per-atom array.

Fix store/state fix does not calculate per-atom values

Fixes that calculate global or local quantities cannot be used with fix store/state.

Fix store/state for atom property that isn't allocated
Self-explanatory.
Fix store/state variable is not atom-style variable
Only atom-style variables calculate per-atom quantities.
Fix temp/berendsen period must be > 0.0

165

Self-explanatory.
Fix temp/berendsen variable returned negative temperature
Self-explanatory.
Fix temp/rescale variable returned negative temperature
Self-explanatory.
Fix thermal/conductivity swap value must be positive
Self-explanatory.
Fix tmd must come after integration fixes
Any fix tmd command must appear in the input script after all time integration fixes (nve, nvt, npt). See
the fix tmd documentation for details.
Fix ttm electron temperatures must be > 0.0
Self-explanatory.
Fix ttm electronic_density must be > 0.0
Self-explanatory.
Fix ttm electronic_specific_heat must be > 0.0
Self-explanatory.
Fix ttm electronic_thermal_conductivity must be >= 0.0
Self-explanatory.
Fix ttm gamma_p must be > 0.0
Self-explanatory.
Fix ttm gamma_s must be >= 0.0
Self-explanatory.
Fix ttm number of nodes must be > 0
Self-explanatory.
Fix ttm v_0 must be >= 0.0
Self-explanatory.
Fix used in compute atom/molecule not computed at compatible time
The fix must produce per-atom quantities on timesteps that the compute needs them.
Fix used in compute reduce not computed at compatible time
Fixes generate their values on specific timesteps. Compute reduce is requesting a value on a non-allowed
timestep.
Fix used in compute slice not computed at compatible time
Fixes generate their values on specific timesteps. Compute slice is requesting a value on a non-allowed
timestep.
Fix viscosity swap value must be positive
Self-explanatory.
Fix viscosity vtarget value must be positive
Self-explanatory.
Fix wall cutoff <= 0.0
Self-explanatory.
Fix wall/colloid requires atom style sphere
Self-explanatory.
Fix wall/colloid requires extended particles
One of the particles has radius 0.0.
Fix wall/gran is incompatible with Pair style
Must use a granular pair style to define the parameters needed for this fix.
Fix wall/gran requires atom style sphere
Self-explanatory.
Fix wall/piston command only available at zlo
The face keyword must be zlo.
Fix wall/region colloid requires atom style sphere
Self-explanatory.

166

Fix wall/region colloid requires extended particles
One of the particles has radius 0.0.
Fix wall/region cutoff <= 0.0
Self-explanatory.
Fix_modify pressure ID does not compute pressure
The compute ID assigned to the fix must compute pressure.
Fix_modify temperature ID does not compute temperature
The compute ID assigned to the fix must compute temperature.
For triclinic deformation, specified target stress must be hydrostatic
Triclinic pressure control is allowed using the tri keyword, but non-hydrostatic pressure control can not
be used in this case.
Found no restart file matching pattern
When using a "*" in the restart file name, no matching file was found.
GPU library not compiled for this accelerator
Self-explanatory.
GPU package does not (yet) work with atom_style template
Self-explanatory.
GPU particle split must be set to 1 for this pair style.
For this pair style, you cannot run part of the force calculation on the host. See the package command.
GPU split param must be positive for hybrid pair styles
See the package gpu command.
Gmask function in equal-style variable formula
Gmask is per-atom operation.
Gravity changed since fix pour was created
The gravity vector defined by fix gravity must be static.
Gravity must point in -y to use with fix pour in 2d
Self-explanatory.
Gravity must point in -z to use with fix pour in 3d
Self-explanatory.
Grmask function in equal-style variable formula
Grmask is per-atom operation.
Group ID does not exist
A group ID used in the group command does not exist.
Group ID in variable formula does not exist
Self-explanatory.
Group command before simulation box is defined
The group command cannot be used before a read_data, read_restart, or create_box command.
Group region ID does not exist
A region ID used in the group command does not exist.
If read_dump purges it cannot replace or trim
These operations are not compatible. See the read_dump doc page for details.
lllegal ... command
Self-explanatory. Check the input script syntax and compare to the documentation for the command. You
can use -echo screen as a command-line option when running LAMMPS to see the offending line.
lllegal COMB parameter
One or more of the coefficients defined in the potential file is invalid.
lllegal COMB3 parameter
One or more of the coefficients defined in the potential file is invalid.
lllegal Stillinger-Weber parameter
One or more of the coefficients defined in the potential file is invalid.
lllegal Tersoff parameter
One or more of the coefficients defined in the potential file is invalid.

167

lllegal fix gcmce gas mass <=0
The computed mass of the designated gas molecule or atom type was less than or equal to zero.
lllegal fix wall/piston velocity
The piston velocity must be positive.
lllegal integrate style
Self-explanatory.
lllegal nb3b/harmonic parameter
One or more of the coefficients defined in the potential file is invalid.
lllegal number of angle table entries
There must be at least 2 table entries.
lllegal number of bond table entries
There must be at least 2 table entries.
lllegal number of pair table entries
There must be at least 2 table entries.
lllegal simulation box
The lower bound of the simulation box is greater than the upper bound.
Imageint setting in Imptype.h is invalid
Imageint must be as large or larger than smallint.
Imageint setting in lmptype.h is not compatible
Format of imageint stored in restart file is not consistent with LAMMPS version you are running. See the
settings in src/lmptype.h
Improper atom missing in delete_bonds
The delete_bonds command cannot find one or more atoms in a particular improper on a particular
processor. The pairwise cutoff is too short or the atoms are too far apart to make a valid improper.
Improper atom missing in set command
The set command cannot find one or more atoms in a particular improper on a particular processor. The
pairwise cutoff is too short or the atoms are too far apart to make a valid improper.
Improper atoms %d %d %d %d missing on proc %d at step %ld
One or more of 4 atoms needed to compute a particular improper are missing on this processor. Typically
this is because the pairwise cutoff is set too short or the improper has blown apart and an atom is too far
away.
Improper coeff for hybrid has invalid style
Improper style hybrid uses another improper style as one of its coefficients. The improper style used in
the improper_coeff command or read from a restart file is not recognized.
Improper coeffs are not set
No improper coefficients have been assigned in the data file or via the improper_coeff command.
Improper style hybrid cannot have hybrid as an argument
Self-explanatory.
Improper style hybrid cannot have none as an argument
Self-explanatory.
Improper style hybrid cannot use same improper style twice
Self-explanatory.
Improper_coeff command before improper_style is defined
Coefficients cannot be set in the data file or via the improper_coeff command until an improper_style has
been assigned.
Improper_coeff command before simulation box is defined
The improper_coeff command cannot be used before a read_data, read_restart, or create_box command.
Improper_coeff command when no impropers allowed
The chosen atom style does not allow for impropers to be defined.
Improper_style command when no impropers allowed
The chosen atom style does not allow for impropers to be defined.
Impropers assigned incorrectly

168

Impropers read in from the data file were not assigned correctly to atoms. This means there is something
invalid about the topology definitions.
Impropers defined but no improper types
The data file header lists improper but no improper types.
Inconsistent iparam/jparam values in fix bond/create command
If itype and jtype are the same, then their maxbond and newtype settings must also be the same.
Inconsistent line segment in data file
The end points of the line segment are not equal distances from the center point which is the atom
coordinate.
Inconsistent triangle in data file
The centroid of the triangle as defined by the corner points is not the atom coordinate.
Incorrect # of floating-point values in Bodies section of data file
See doc page for body style.
Incorrect # of integer values in Bodies section of data file
See doc page for body style.
Incorrect %s format in data file
A section of the data file being read by fix property/atom does not have the correct number of values per
line.
Incorrect args for angle coefficients
Self-explanatory. Check the input script or data file.
Incorrect args for bond coefficients
Self-explanatory. Check the input script or data file.
Incorrect args for dihedral coefficients
Self-explanatory. Check the input script or data file.
Incorrect args for improper coefficients
Self-explanatory. Check the input script or data file.
Incorrect args for pair coefficients
Self-explanatory. Check the input script or data file.
Incorrect args in pair_style command
Self-explanatory.
Incorrect atom format in data file
Number of values per atom line in the data file is not consistent with the atom style.
Incorrect atom format in neb file
The number of fields per line is not what expected.
Incorrect bonus data format in data file
See the read_data doc page for a description of how various kinds of bonus data must be formatted for
certain atom styles.
Incorrect boundaries with slab Ewald
Must have periodic X,y dimensions and non-periodic z dimension to use 2d slab option with Ewald.
Incorrect boundaries with slab EwaldDisp
Must have periodic X,y dimensions and non-periodic z dimension to use 2d slab option with Ewald.
Incorrect boundaries with slab PPPM
Must have periodic X,y dimensions and non-periodic z dimension to use 2d slab option with PPPM.
Incorrect boundaries with slab PPPMDisp
Must have periodic X,y dimensions and non-periodic z dimension to use 2d slab option with pppm/disp.
Incorrect element names in ADP potential file
The element names in the ADP file do not match those requested.
Incorrect element names in EAM potential file
The element names in the EAM file do not match those requested.
Incorrect format in COMB potential file
Incorrect number of words per line in the potential file.
Incorrect format in COMB3 potential file

169

Incorrect number of words per line in the potential file.
Incorrect format in MEAM potential file
Incorrect number of words per line in the potential file.
Incorrect format in Stillinger-Weber potential file
Incorrect number of words per line in the potential file.
Incorrect format in TMD target file
Format of file read by fix tmd command is incorrect.
Incorrect format in Tersoff potential file
Incorrect number of words per line in the potential file.
Incorrect format in nb3b/harmonic potential file
Incorrect number of words per line in the potential file.
Incorrect integer value in Bodies section of data file
See doc page for body style.
Incorrect multiplicity arg for dihedral coefficients
Self-explanatory. Check the input script or data file.
Incorrect rigid body format in fix rigid file
The number of fields per line is not what expected.
Incorrect rigid body format in fix rigid/small file
The number of fields per line is not what expected.
Incorrect sign arg for dihedral coefficients
Self-explanatory. Check the input script or data file.
Incorrect velocity format in data file
Each atom style defines a format for the Velocity section of the data file. The read-in lines do not match.
Incorrect weight arg for dihedral coefficients
Self-explanatory. Check the input script or data file.
Index between variable brackets must be positive
Self-explanatory.
Indexed per-atom vector in variable formula without atom map
Accessing a value from an atom vector requires the ability to lookup an atom index, which is provided by
an atom map. An atom map does not exist (by default) for non-molecular problems. Using the
atom_modify map command will force an atom map to be created.
Initial temperatures not all set in fix ttm
Self-explantory.
Input line quote not followed by whitespace
An end quote must be followed by whitespace.
Insertion region extends outside simulation box
Self-explanatory.
Insufficient Jacobi rotations for POEMS body
Eigensolve for rigid body was not sufficiently accurate.
Insufficient Jacobi rotations for body nparticle
Eigensolve for rigid body was not sufficiently accurate.
Insufficient Jacobi rotations for rigid body
Eigensolve for rigid body was not sufficiently accurate.
Insufficient Jacobi rotations for rigid molecule
Eigensolve for rigid body was not sufficiently accurate.
Insufficient Jacobi rotations for triangle
The calculation of the intertia tensor of the triangle failed. This should not happen if it is a reasonably
shaped triangle.
Insufficient memory on accelerator
There is insufficient memory on one of the devices specified for the gpu package
Internal error in atom_style body
This error should not occur. Contact the developers.

170

Invalid -reorder N value
Self-explanatory.
Invalid Boolean syntax in if command
Self-explanatory.
Invalid LAMMPS restart file
The file does not appear to be a LAMMPS restart file since it doesn't contain the correct magic string at
the beginning.
Invalid REAX atom type
There is a mis-match between LAMMPS atom types and the elements listed in the ReaxFF force field
file.
Invalid angle style
The choice of angle style is unknown.
Invalid angle table length
Length must be 2 or greater.
Invalid angle type in Angles section of data file
Angle type must be positive integer and within range of specified angle types.
Invalid angle type in Angles section of molecule file

Self-explanatory.
Invalid angle type index for fix shake
Self-explanatory.

Invalid args for non-hybrid pair coefficients

"NULL" is only supported in pair_coeff calls when using pair hybrid
Invalid atom ID in %s section of data file

An atom in a section of the data file being read by fix property/atom has an invalid atom ID that is <=0 or

> the maximum existing atom ID.
Invalid atom ID in Angles section of data file

Atom IDs must be positive integers and within range of defined atoms.
Invalid atom ID in Angles section of molecule file

Self-explanatory.
Invalid atom ID in Atoms section of data file

Atom IDs must be positive integers.
Invalid atom ID in Bodies section of data file

Atom IDs must be positive integers and within range of defined atoms.
Invalid atom ID in Bonds section of data file

Atom IDs must be positive integers and within range of defined atoms.
Invalid atom ID in Bonds section of molecule file

Self-explanatory.
Invalid atom ID in Bonus section of data file

Atom IDs must be positive integers and within range of defined atoms.
Invalid atom ID in Dihedrals section of data file

Atom IDs must be positive integers and within range of defined atoms.
Invalid atom ID in Impropers section of data file

Atom IDs must be positive integers and within range of defined atoms.
Invalid atom ID in Velocities section of data file

Atom IDs must be positive integers and within range of defined atoms.
Invalid atom ID in dihedrals section of molecule file

Self-explanatory.
Invalid atom ID in impropers section of molecule file

Self-explanatory.
Invalid atom ID in variable file

Self-explanatory.
Invalid atom IDs in neb file

171

An ID in the file was not found in the system.
Invalid atom diameter in molecule file
Diameters must be >= 0.0.
Invalid atom mass for fix shake
Mass specified in fix shake command must be > 0.0.
Invalid atom mass in molecule file
Masses must be > 0.0.
Invalid atom style
The choice of atom style is unknown.
Invalid atom type in Atoms section of data file
Atom types must range from 1 to specified # of types.
Invalid atom type in create_atoms command
The create_box command specified the range of valid atom types. An invalid type is being requested.
Invalid atom type in create_atoms mol command
The atom types in the defined molecule are added to the value specified in the create_atoms command, as
an offset. The final value for each atom must be between 1 to N, where N is the number of atom types.
Invalid atom type in fix bond/create command
Self-explanatory.
Invalid atom type in fix deposit command
Self-explanatory.
Invalid atom type in fix deposit mol command
The atom types in the defined molecule are added to the value specified in the create_atoms command, as
an offset. The final value for each atom must be between 1 to N, where N is the number of atom types.
Invalid atom type in fix gcmc command
The atom type specified in the GCMC command does not exist.
Invalid atom type in fix pour command
Self-explanatory.
Invalid atom type in fix pour mol command
The atom types in the defined molecule are added to the value specified in the create_atoms command, as
an offset. The final value for each atom must be between 1 to N, where N is the number of atom types.
Invalid atom type in molecule file
Atom types must range from 1 to specified # of types.
Invalid atom type in neighbor exclusion list
Atom types must range from 1 to Ntypes inclusive.
Invalid atom type index for fix shake
Atom types must range from 1 to Ntypes inclusive.
Invalid atom types in pair_write command
Atom types must range from 1 to Ntypes inclusive.
Invalid atom vector in variable formula
The atom vector is not recognized.
Invalid atom_style body command
No body style argument was provided.
Invalid atom_style command
Self-explanatory.
Invalid attribute in dump custom command
Self-explantory.
Invalid attribute in dump local command
Self-explantory.
Invalid attribute in dump modify command
Self-explantory.
Invalid basis setting in create_atoms command
The basis index must be between 1 to N where N is the number of basis atoms in the lattice. The type

172

index must be between 1 to N where N is the number of atom types.
Invalid basis setting in fix append/atoms command
The basis index must be between 1 to N where N is the number of basis atoms in the lattice. The type
index must be between 1 to N where N is the number of atom types.
Invalid body nparticle command
Arguments in atom-style command are not correct.
Invalid body style
The choice of body style is unknown.
Invalid bond style
The choice of bond style is unknown.
Invalid bond table length
Length must be 2 or greater.
Invalid bond type in Bonds section of data file
Bond type must be positive integer and within range of specified bond types.
Invalid bond type in Bonds section of molecule file
Self-explanatory.
Invalid bond type in fix bond/break command
Self-explanatory.
Invalid bond type in fix bond/create command
Self-explanatory.
Invalid bond type index for fix shake
Self-explanatory. Check the fix shake command in the input script.
Invalid coeffs for this dihedral style
Cannot set class 2 coeffs in data file for this dihedral style.
Invalid color in dump_modify command
The specified color name was not in the list of recognized colors. See the dump_modify doc page.
Invalid color map min/max values
The min/max values are not consistent with either each other or with values in the color map.
Invalid command-line argument
One or more command-line arguments is invalid. Check the syntax of the command you are using to
launch LAMMPS.
Invalid compute ID in variable formula
The compute is not recognized.
Invalid compute style
Self-explanatory.
Invalid custom OpenCL parameter string.
There are not enough or too many parameters in the custom string for package GPU.
Invalid cutoff in communicate command
Specified cutoff must be >= 0.0.
Invalid cutoffs in pair_write command
Inner cutoff must be larger than 0.0 and less than outer cutoff.
Invalid dI or d2 value for pair colloid coeff
Neither d1 or d2 can be < 0.
Invalid data file section: Angle Coeffs
Atom style does not allow angles.
Invalid data file section: AngleAngle Coeffs
Atom style does not allow impropers.
Invalid data file section: AngleAngleTorsion Coeffs
Atom style does not allow dihedrals.
Invalid data file section: AngleTorsion Coeffs
Atom style does not allow dihedrals.
Invalid data file section: Angles

173

Atom style does not allow angles.
Invalid data file section: Bodies
Atom style does not allow bodies.
Invalid data file section: Bond Coeffs
Atom style does not allow bonds.
Invalid data file section: BondAngle Coeffs
Atom style does not allow angles.
Invalid data file section: BondBond Coeffs
Atom style does not allow angles.
Invalid data file section: BondBondl13 Coeffs
Atom style does not allow dihedrals.
Invalid data file section: Bonds
Atom style does not allow bonds.
Invalid data file section: Dihedral Coeffs
Atom style does not allow dihedrals.
Invalid data file section: Dihedrals
Atom style does not allow dihedrals.
Invalid data file section: Ellipsoids
Atom style does not allow ellipsoids.
Invalid data file section: EndBondTorsion Coeffs
Atom style does not allow dihedrals.
Invalid data file section: Improper Coeffs
Atom style does not allow impropers.
Invalid data file section: Impropers
Atom style does not allow impropers.
Invalid data file section: Lines
Atom style does not allow lines.
Invalid data file section: MiddleBondTorsion Coeffs
Atom style does not allow dihedrals.
Invalid data file section: Triangles
Atom style does not allow triangles.
Invalid delta_conf in tad command
The value must be between 0 and 1 inclusive.
Invalid density in Atoms section of data file
Density value cannot be <= 0.0.
Invalid density in set command
Density must be > 0.0.
Invalid diameter in set command
Self-explanatory.
Invalid dihedral style
The choice of dihedral style is unknown.
Invalid dihedral type in Dihedrals section of data file
Dihedral type must be positive integer and within range of specified dihedral types.
Invalid dihedral type in dihedrals section of molecule file
Self-explanatory.
Invalid dipole length in set command
Self-explanatory.
Invalid displace_atoms rotate axis for 2d
Axis must be in z direction.
Invalid dump dcd filename
Filenames used with the dump dcd style cannot be binary or compressed or cause multiple files to be
written.

174

Invalid dump frequency
Dump frequency must be 1 or greater.
Invalid dump image element name
The specified element name was not in the standard list of elements. See the dump_modify doc page.
Invalid dump image filename
The file produced by dump image cannot be binary and must be for a single processor.
Invalid dump image persp value
Persp value must be >= 0.0.
Invalid dump image theta value
Theta must be between 0.0 and 180.0 inclusive.
Invalid dump image zoom value
Zoom value must be > 0.0.
Invalid dump movie filename
The file produced by dump movie cannot be binary or compressed and must be a single file for a single
processor.
Invalid dump reader style
Self-explanatory.
Invalid dump style
The choice of dump style is unknown.
Invalid dump xtc filename
Filenames used with the dump xtc style cannot be binary or compressed or cause multiple files to be
written.
Invalid dump xyz filename
Filenames used with the dump xyz style cannot be binary or cause files to be written by each processor.
Invalid dump_modify threshhold operator
Operator keyword used for threshold specification in not recognized.
Invalid entry in -reorder file
Self-explanatory.
Invalid fix ID in variable formula
The fix is not recognized.
Invalid fix ave/time off column
Self-explantory.
Invalid fix box/relax command for a 2d simulation
Fix box/relax styles involving the z dimension cannot be used in a 2d simulation.
Invalid fix box/relax command pressure settings
If multiple dimensions are coupled, those dimensions must be specified.
Invalid fix box/relax pressure settings
Settings for coupled dimensions must be the same.
Invalid fix nvt/npt/nph command for a 2d simulation
Cannot control z dimension in a 2d model.
Invalid fix nvt/npt/nph command pressure settings
If multiple dimensions are coupled, those dimensions must be specified.
Invalid fix nvt/npt/nph pressure settings
Settings for coupled dimensions must be the same.
Invalid fix press/berendsen for a 2d simulation
The z component of pressure cannot be controlled for a 2d model.
Invalid fix press/berendsen pressure settings
Settings for coupled dimensions must be the same.
Invalid fix rigid npt/nph command for a 2d simulation
Cannot control z dimension in a 2d model.
Invalid fix rigid npt/nph command pressure settings
If multiple dimensions are coupled, those dimensions must be specified.

175

Invalid fix rigid npt/nph pressure settings
Settings for coupled dimensions must be the same.
Invalid fix style
The choice of fix style is unknown.
Invalid flag in force field section of restart file
Unrecognized entry in restart file.
Invalid flag in header section of restart file
Unrecognized entry in restart file.
Invalid flag in peratom section of restart file
The format of this section of the file is not correct.
Invalid flag in type arrays section of restart file
Unrecognized entry in restart file.
Invalid format in Bodies section of data file
The specified number of integer or floating point values does not appear.
Invalid frequency in temper command
Nevery must be > 0.
Invalid group ID in neigh_modify command
A group ID used in the neigh_modify command does not exist.
Invalid group function in variable formula
Group function is not recognized.
Invalid group in communicate command
Self-explanatory.
Invalid image up vector
Up vector cannot be (0,0,0).
Invalid immediate variable
Syntax of immediate value is incorrect.
Invalid improper style
The choice of improper style is unknown.
Invalid improper type in Impropers section of data file

Improper type must be positive integer and within range of specified improper types.

Invalid improper type in impropers section of molecule file
Self-explanatory.

Invalid index for non-body particles in compute body/local command
Only indices 1,2,3 can be used for non-body particles.

Invalid index in compute body/local command
Self-explanatory.

Invalid keyword in angle table parameters
Self-explanatory.

Invalid keyword in bond table parameters
Self-explanatory.

Invalid keyword in compute angle/local command
Self-explanatory.

Invalid keyword in compute bond/local command
Self-explanatory.

Invalid keyword in compute dihedral/local command
Self-explanatory.

Invalid keyword in compute improper/local command
Self-explanatory.

Invalid keyword in compute pair/local command
Self-explanatory.

Invalid keyword in compute property/atom command
Self-explanatory.

176

Invalid keyword in compute property/local command
Self-explanatory.
Invalid keyword in compute property/molecule command
Self-explanatory.
Invalid keyword in dump cfg command
Self-explanatory.
Invalid keyword in pair table parameters
Keyword used in list of table parameters is not recognized.
Invalid keyword in thermo_style custom command
One or more specified keywords are not recognized.
Invalid kspace style
The choice of kspace style is unknown.
Invalid length in set command
Self-explanatory.
Invalid mass in set command
Self-explanatory.
Invalid mass line in data file
Self-explanatory.
Invalid mass value
Self-explanatory.
Invalid math function in variable formula
Self-explanatory.
Invalid math/group/special function in variable formula
Self-explanatory.
Invalid option in lattice command for non-custom style
Certain lattice keywords are not supported unless the lattice style is "custom".
Invalid order of forces within respa levels
For respa, ordering of force computations within respa levels must obey certain rules. E.g. bonds cannot
be compute less frequently than angles, pairwise forces cannot be computed less frequently than kspace,
etc.
Invalid pair style
The choice of pair style is unknown.
Invalid pair table cutoff
Cutoffs in pair_coeff command are not valid with read-in pair table.
Invalid pair table length
Length of read-in pair table is invalid
Invalid partitions in processors part command
Valid partitions are numbered 1 to N and the sender and receiver cannot be the same partition.
Invalid radius in Atoms section of data file
Radius must be >= 0.0.
Invalid random number seed in fix ttm command
Random number seed must be > 0.
Invalid random number seed in set command
Random number seed must be > 0.
Invalid region style
The choice of region style is unknown.
Invalid replace values in compute reduce
Self-explanatory.
Invalid rigid body ID in fix rigid file
The ID does not match the number of an existing ID of rigid bodies that are defined by the fix rigid
command.
Invalid rigid body ID in fix rigid/small file

177

The ID does not match the number of an existing ID of rigid bodies that are defined by the fix rigid/small
command.
Invalid run command N value
The number of timesteps must fit in a 32-bit integer. If you want to run for more steps than this, perform
multiple shorter runs.
Invalid run command start/stop value
Self-explanatory.
Invalid run command upto value
Self-explanatory.
Invalid seed for Marsaglia random # generator
The initial seed for this random number generator must be a positive integer less than or equal to 900
million.
Invalid seed for Park random # generator
The initial seed for this random number generator must be a positive integer.
Invalid shake angle type in molecule file
Self-explanatory.
Invalid shake atom in molecule file
Self-explanatory.
Invalid shake bond type in molecule file
Self-explanatory.
Invalid shake flag in molecule file
Self-explanatory.
Invalid shape in Ellipsoids section of data file
Self-explanatory.
Invalid shape in Triangles section of data file
Two or more of the triangle corners are duplicate points.
Invalid shape in set command
Self-explanatory.
Invalid shear direction for fix wall/gran
Self-explanatory.
Invalid special atom index in molecule file
Self-explanatory.
Invalid special function in variable formula
Self-explanatory.
Invalid style in pair_write command
Self-explanatory. Check the input script.
Invalid syntax in variable formula
Self-explanatory.
Invalid t_event in prd command
Self-explanatory.
Invalid t_event in tad command
The value must be greater than 0.
Invalid template atom in Atoms section of data file
The atom indices must be between 1 to N, where N is the number of atoms in the template molecule the
atom belongs to.
Invalid template index in Atoms section of data file
The template indices must be between 1 to N, where N is the number of molecules in the template.
Invalid thermo keyword in variable formula
The keyword is not recognized.
Invalid threads_per_atom specified.
For 3-body potentials on the GPU, the threads_per_atom setting cannot be greater than 4 for NVIDIA
GPUs.

178

Invalid tmax in tad command
The value must be greater than 0.0.
Invalid type for mass set
Mass command must set a type from 1-N where N is the number of atom types.
Invalid use of library file() function
This function is called thru the library interface. This error should not occur. Contact the developers if it
does.
Invalid value in set command
The value specified for the setting is invalid, likely because it is too small or too large.
Invalid variable evaluation in variable formula
A variable used in a formula could not be evaluated.
Invalid variable in next command
Self-explanatory.
Invalid variable name
Variable name used in an input script line is invalid.
Invalid variable name in variable formula
Variable name is not recognized.
Invalid variable style in special function next
Only file-style or atomfile-style variables can be used with next().
Invalid variable style with next command
Variable styles equal and world cannot be used in a next command.
Invalid volume in set command
Volume must be > 0.0.
Invalid wiggle direction for fix wall/gran
Self-explanatory.
Invoked angle equil angle on angle style none
Self-explanatory.
Invoked angle single on angle style none
Self-explanatory.
Invoked bond equil distance on bond style none
Self-explanatory.
Invoked bond single on bond style none
Self-explanatory.
Invoked pair single on pair style none
A command (e.g. a dump) attempted to invoke the single() function on a pair style none, which is illegal.
You are probably attempting to compute per-atom quantities with an undefined pair style.
Invoking coulombic in pair style lj/coul requires atom attribute q
The atom style defined does not have this attribute.
Invoking coulombic in pair style lj/long/dipole/long requires atom attribute q
The atom style defined does not have these attributes.
KIM neighbor iterator exceeded range
This should not happen. It likely indicates a bug in the KIM implementation of the interatomic potential
where it is requesting neighbors incorrectly.
KSpace accuracy must be > 0
The kspace accuracy designated in the input must be greater than zero.
KSpace accuracy too large to estimate G vector
Reduce the accuracy request or specify gwald explicitly via the kspace_modify command.
KSpace accuracy too low
Requested accuracy must be less than 1.0.
KSpace solver requires a pair style
No pair style is defined.
KSpace style does not yet support triclinic geometries

179

The specified kspace style does not allow for non-orthogonal simulation boxes.
KSpace style has not yet been set
Cannot use kspace_modify command until a kspace style is set.
KSpace style is incompatible with Pair style
Setting a kspace style requires that a pair style with a long-range Coulombic or dispersion component be
used.
Keyword %s in MEAM parameter file not recognized
Self-explanatory.
Kspace style does not support compute group/group
Self-explanatory.
Kspace style pppm/disp/tip4p requires newton on
Self-explanatory.
Kspace style pppm/tip4p requires newton on
Self-explanatory.
Kspace style requires atom attribute q
The atom style defined does not have these attributes.
Kspace style with selected options requires atom attribute ¢
The atom style defined does not have these attributes. Change the atom style or switch of the coulomb
solver.
Kspace_modify eigtol must be smaller than one
Self-explanatory.
LAMMPS unit_style lj not supported by KIM models
Self-explanatory. Check the input script or data file.
LJ6 off not supported in pair_style buck/long/coul/long
Self-exlanatory.
Label wasn't found in input script
Self-explanatory.
Lattice orient vectors are not orthogonal
The three specified lattice orientation vectors must be mutually orthogonal.
Lattice orient vectors are not right-handed
The three specified lattice orientation vectors must create a right-handed coordinate system such that al
cross a2 = a3.
Lattice primitive vectors are collinear
The specified lattice primitive vectors do not for a unit cell with non-zero volume.
Lattice settings are not compatible with 2d simulation
One or more of the specified lattice vectors has a non-zero z component.
Lattice spacings are invalid
Each x,y,z spacing must be > 0.
Lattice style incompatible with simulation dimension
2d simulation can use sq, sq2, or hex lattice. 3d simulation can use sc, bcc, or fcc lattice.
Log of zero/negative value in variable formula
Self-explanatory.
Lost atoms via balance: original %ld current %ld
This should not occur. Report the problem to the developers.
Lost atoms: original %ld current %ld
Lost atoms are checked for each time thermo output is done. See the thermo_modify lost command for
options. Lost atoms usually indicate bad dynamics, e.g. atoms have been blown far out of the simulation
box, or moved futher than one processor's sub-domain away before reneighboring.
MEAM library error %d
A call to the MEAM Fortran library returned an error.
MPI_LMP_BIGINT and bigint in Imptype.h are not compatible
The size of the MPI datatype does not match the size of a bigint.

180

MPI_LMP_TAGINT and tagint in Imptype.h are not compatible
The size of the MPI datatype does not match the size of a tagint.
MSM grid is too large
The global MSM grid is larger than OFFSET in one or more dimensions. OFFSET is currently set to
16384. You likely need to decrease the requested accuracy.
MSM order must be 4, 6, 8, or 10
This is a limitation of the MSM implementation in LAMMPS: the MSM order can only be 4, 6, 8, or 10.
Mass command before simulation box is defined
The mass command cannot be used before a read_data, read_restart, or create_box command.
Matrix factorization to split dispersion coefficients failed
This should not normally happen. Contact the developers.
Min_style command before simulation box is defined
The min_style command cannot be used before a read_data, read_restart, or create_box command.
Minimization could not find thermo_pe compute
This compute is created by the thermo command. It must have been explicitly deleted by a uncompute
command.
Minimize command before simulation box is defined
The minimize command cannot be used before a read_data, read_restart, or create_box command.
Mismatched brackets in variable
Self-explanatory.
Mismatched compute in variable formula
A compute is referenced incorrectly or a compute that produces per-atom values is used in an equal-style
variable formula.
Mismatched fix in variable formula
A fix is referenced incorrectly or a fix that produces per-atom values is used in an equal-style variable
formula.
Mismatched variable in variable formula
A variable is referenced incorrectly or an atom-style variable that produces per-atom values is used in an
equal-style variable formula.
Modulo 0 in variable formula
Self-explanatory.
Molecule count changed in compute atom/molecule
Number of molecules must remain constant over time.
Molecule count changed in compute com/molecule
Number of molecules must remain constant over time.
Molecule count changed in compute gyration/molecule
Number of molecules must remain constant over time.
Molecule count changed in compute inertia/molecule
Number of molecules must remain constant over time.
Molecule count changed in compute msd/molecule
Number of molecules must remain constant over time.
Molecule count changed in compute property/molecule
Number of molecules must remain constant over time.
Molecule file has angles but no nangles setting
Self-explanatory.
Molecule file has bonds but no nbonds setting
Self-explanatory.
Molecule file has dihedrals but no ndihedrals setting
Self-explanatory.
Molecule file has impropers but no nimpropers setting
Self-explanatory.
Molecule file has special flags but no bonds

181

Self-explanatory.
Molecule file needs both Special Bond sections
Self-explanatory.
Molecule file shake flags not before shake atoms
The order of the two sections is important.
Molecule file shake flags not before shake bonds
The order of the two sections is important.
Molecule file shake info is incomplete
All 3 SHAKE sections are needed.
Molecule file special list does not match special count
The number of values in an atom's special list does not match count.
Molecule file 7z center-of-mass must be 0.0 for 2d

Self-explanatory.

Molecule file z coord must be 0.0 for 2d
Self-explanatory.

Molecule template ID for atom_style template does not exist
Self-explanatory.

Molecule template ID for create_atoms does not exist
Self-explantory.

Molecule template ID for fix deposit does not exist
Self-explanatory.

Molecule template ID for fix pour does not exist
Self-explanatory.

Molecule template ID for fix rigid/small does not exist
Self-explanatory.

Molecule template ID for fix shake does not exist
Self-explanatory.

Molecule template ID must be alphanumeric or underscore characters
Self-explanatory.

Molecule toplogy/atom exceeds system topology/atom
The number of bonds, angles, etc per-atom in the molecule exceeds the system setting. See the create_box
command for how to specify these values.
Molecule topology type exceeds system topology type
The number of bond, angle, etc types in the molecule exceeds the system setting. See the create_box
command for how to specify these values.
More than one fix deform
Only one fix deform can be defined at a time.
More than one fix freeze
Only one of these fixes can be defined, since the granular pair potentials access it.
More than one fix shake
Only one fix shake can be defined.
Must define angle_style before Angle Coeffs
Must use an angle_style command before reading a data file that defines Angle Coeffs.
Must define angle_style before BondAngle Coeffs
Must use an angle_style command before reading a data file that defines Angle Coeffs.
Must define angle_style before BondBond Coeffs
Must use an angle_style command before reading a data file that defines Angle Coeffs.
Must define bond_style before Bond Coeffs
Must use a bond_style command before reading a data file that defines Bond Coeffs.
Must define dihedral_style before AngleAngleTorsion Coeffs
Must use a dihedral_style command before reading a data file that defines AngleAngleTorsion Coeffs.
Must define dihedral_style before AngleTorsion Coeffs

182

Must use a dihedral_style command before reading a data file that defines AngleTorsion Coeffs.
Must define dihedral_style before BondBondl3 Coeffs
Must use a dihedral_style command before reading a data file that defines BondBond13 Coeffs.
Must define dihedral_style before Dihedral Coeffs
Must use a dihedral_style command before reading a data file that defines Dihedral Coeffs.
Must define dihedral_style before EndBondTorsion Coeffs
Must use a dihedral_style command before reading a data file that defines EndBondTorsion Coeffs.
Must define dihedral_style before MiddleBondTorsion Coeffs
Must use a dihedral_style command before reading a data file that defines MiddleBondTorsion Coeffs.
Must define improper_style before AngleAngle Coeffs
Must use an improper_style command before reading a data file that defines AngleAngle Coeffs.
Must define improper_style before Improper Coeffs
Must use an improper_style command before reading a data file that defines Improper Coeffs.
Must define pair_style before Pair Coeffs
Must use a pair_style command before reading a data file that defines Pair Coeffs.
Must define pair_style before PairlJ Coeffs
Must use a pair_style command before reading a data file that defines PairlJ Coeffs.
Must have more than one processor partition to temper
Cannot use the temper command with only one processor partition. Use the -partition command-line
option.
Must read Atoms before Angles
The Atoms section of a data file must come before an Angles section.
Must read Atoms before Bodies
The Atoms section of a data file must come before a Bodies section.
Must read Atoms before Bonds
The Atoms section of a data file must come before a Bonds section.
Must read Atoms before Dihedrals
The Atoms section of a data file must come before a Dihedrals section.
Must read Atoms before Ellipsoids
The Atoms section of a data file must come before a Ellipsoids section.
Must read Atoms before Impropers
The Atoms section of a data file must come before an Impropers section.
Must read Atoms before Lines
The Atoms section of a data file must come before a Lines section.
Must read Atoms before Triangles
The Atoms section of a data file must come before a Triangles section.
Must read Atoms before Velocities
The Atoms section of a data file must come before a Velocities section.
Must set both respa inner and outer
Cannot use just the inner or outer option with respa without using the other.
Must shrink-wrap piston boundary
The boundary style of the face where the piston is applied must be of type s (shrink-wrapped).
Must specify a region in fix deposit
The region keyword must be specified with this fix.
Must specify a region in fix pour
Self-explanatory.
Must use -in switch with multiple partitions
A multi-partition simulation cannot read the input script from stdin. The -in command-line option must be
used to specify a file.
Must use a block or cylinder region with fix pour
Self-explanatory.
Must use a block region with fix pour for 2d simulations

183

Self-explanatory.
Must use a bond style with TIP4P potential
TIPAP potentials assume bond lengths in water are constrained by a fix shake command.
Must use a molecular atom style with fix poems molecule
Self-explanatory.
Must use a z-axis cylinder region with fix pour
Self-explanatory.
Must use an angle style with TIP4P potential
TIPAP potentials assume angles in water are constrained by a fix shake command.
Must use atom style with molecule IDs with fix bond/swap
Self-explanatory.
Must use pair_style comb or comb3 with fix geq/comb
Self-explanatory.
Must use variable energy with fix addforce
Must define an energy vartiable when applyting a dynamic force during minimization.
Must use variable energy with fix efield
You must define an energy when performing a minimization with a variable E-field.
NEB command before simulation box is defined
Self-explanatory.
NEB requires damped dynamics minimizer
Use a different minimization style.
NEB requires use of fix neb
Self-explanatory.
NL ramp in wall/piston only implemented in zlo for now
The ramp keyword can only be used for piston applied to face zlo.
Needed bonus data not in data file
Some atom styles require bonus data. See the read_data doc page for details.
Needed molecular topology not in data file
The header of the data file indicated bonds, angles, etc would be included, but they are not present.
Neigh_modify exclude molecule requires atom attribute molecule
Self-explanatory.
Neigh_modify include group != atom_modify first group
Self-explanatory.
Neighbor delay must be 0 or multiple of every setting
The delay and every parameters set via the neigh_modify command are inconsistent. If the delay setting is
non-zero, then it must be a multiple of the every setting.
Neighbor include group not allowed with ghost neighbors
This is a current restriction within LAMMPS.
Neighbor list overflow, boost neigh_modify one
There are too many neighbors of a single atom. Use the neigh_modify command to increase the max
number of neighbors allowed for one atom. You may also want to boost the page size.
Neighbor multi not yet enabled for ghost neighbors
This is a current restriction within LAMMPS.
Neighbor multi not yet enabled for granular
Self-explanatory.
Neighbor multi not yet enabled for rRESPA
Self-explanatory.
Neighbor page size must be >= 10x the one atom setting
This is required to prevent wasting too much memory.
New atom IDs exceed maximum allowed ID
See the setting for tagint in the src/lmptype.h file.
New bond exceeded bonds per atom in fix bond/create

184

See the read_data command for info on setting the "extra bond per atom" header value to allow for
additional bonds to be formed.
New bond exceeded special list size in fix bond/create
See the special_bonds extra command for info on how to leave space in the special bonds list to allow for
additional bonds to be formed.
Newton bond change after simulation box is defined
The newton command cannot be used to change the newton bond value after a read_data, read_restart, or
create_box command.
Next command must list all universe and uloop variables
This is to insure they stay in sync.
No Kspace style defined for compute group/group
Self-explanatory.
No OpenMP support compiled in
An OpenMP flag is set, but LAMMPS was not built with OpenMP support.
No angle style is defined for compute angle/local
Self-explanatory.
No angles allowed with this atom style
Self-explanatory.
No atom count in molecule file
Self-explanatory.
No atoms in data file
The header of the data file indicated that atoms would be included, but they are not present.
No basis atoms in lattice
Basis atoms must be defined for lattice style user.
No bodies allowed with this atom style
Self-explanatory. Check data file.
No bond style is defined for compute bond/local
Self-explanatory.
No bonds allowed with this atom style
Self-explanatory.
No box information in dump. You have to use 'box no'
Self-explanatory.
No dihedral style is defined for compute dihedral/local
Self-explanatory.
No dihedrals allowed with this atom style
Self-explanatory.
No dump custom arguments specified
The dump custom command requires that atom quantities be specified to output to dump file.
No dump local arguments specified
Self-explanatory.
No ellipsoids allowed with this atom style
Self-explanatory. Check data file.
No fix gravity defined for fix pour
Gravity is required to use fix pour.
No improper style is defined for compute improper/local
Self-explanatory.
No impropers allowed with this atom style
Self-explanatory.
No lines allowed with this atom style
Self-explanatory. Check data file.
No matching element in ADP potential file
The ADP potential file does not contain elements that match the requested elements.

185

No matching element in EAM potential file
The EAM potential file does not contain elements that match the requested elements.

No molecule topology allowed with atom style template
The data file cannot specify the number of bonds, angles, etc, because this info if inferred from the
molecule templates.

No overlap of box and region for create_atoms
Self-explanatory.

No pair hbond/dreiding coefficients set
Self-explanatory.

No pair style defined for compute group/group
Cannot calculate group interactions without a pair style defined.

No pair style is defined for compute pair/local
Self-explanatory.

No pair style is defined for compute property/local
Self-explanatory.

No rigid bodies defined
The fix specification did not end up defining any rigid bodies.

No triangles allowed with this atom style
Self-explanatory. Check data file.

Non digit character between brackets in variable
Self-explantory.

Non integer # of swaps in temper command
Swap frequency in temper command must evenly divide the total # of timesteps.

Not all atom IDs are 0
Either all atoms IDs must be zero or none of them.

Nprocs not a multiple of N for -reorder
Self-explanatory.

Numeric index is out of bounds
A command with an argument that specifies an integer or range of integers is using a value that is less
than 1 or greater than the maximum allowed limit.

One or more atoms belong to multiple rigid bodies
Two or more rigid bodies defined by the fix rigid command cannot contain the same atom.

One or zero atoms in rigid body
Any rigid body defined by the fix rigid command must contain 2 or more atoms.

Only one cut-off allowed when requesting all long
Self-explanatory.

Only one cutoff allowed when requesting all long
Self-explanatory.

Only zhi currently implemented for fix append/atoms
Self-explanatory.

Out of range atoms - cannot compute MSM
One or more atoms are attempting to map their charge to a MSM grid point that is not owned by a
processor. This is likely for one of two reasons, both of them bad. First, it may mean that an atom near the
boundary of a processor's sub-domain has moved more than 1/2 the neighbor skin distance without
neighbor lists being rebuilt and atoms being migrated to new processors. This also means you may be
missing pairwise interactions that need to be computed. The solution is to change the re-neighboring
criteria via the neigh_modify command. The safest settings are "delay O every 1 check yes". Second, it
may mean that an atom has moved far outside a processor's sub-domain or even the entire simulation box.
This indicates bad physics, e.g. due to highly overlapping atoms, too large a timestep, etc.

Out of range atoms - cannot compute PPPM
One or more atoms are attempting to map their charge to a PPPM grid point that is not owned by a
processor. This is likely for one of two reasons, both of them bad. First, it may mean that an atom near the

186

boundary of a processor's sub-domain has moved more than 1/2 the neighbor skin distance without
neighbor lists being rebuilt and atoms being migrated to new processors. This also means you may be
missing pairwise interactions that need to be computed. The solution is to change the re-neighboring
criteria via the neigh_modify command. The safest settings are "delay O every 1 check yes". Second, it

may mean that an atom has moved far outside a processor's sub-domain or even the entire simulation box.

This indicates bad physics, e.g. due to highly overlapping atoms, too large a timestep, etc.
Out of range atoms - cannot compute PPPMDisp
One or more atoms are attempting to map their charge to a PPPM grid point that is not owned by a

processor. This is likely for one of two reasons, both of them bad. First, it may mean that an atom near the

boundary of a processor's sub-domain has moved more than 1/2 the neighbor skin distance without
neighbor lists being rebuilt and atoms being migrated to new processors. This also means you may be
missing pairwise interactions that need to be computed. The solution is to change the re-neighboring
criteria via the neigh_modify command. The safest settings are "delay O every 1 check yes". Second, it

may mean that an atom has moved far outside a processor's sub-domain or even the entire simulation box.

This indicates bad physics, e.g. due to highly overlapping atoms, too large a timestep, etc.
Overlapping large/large in pair colloid

This potential is infinite when there is an overlap.
Overlapping small/large in pair colloid

This potential is infinite when there is an overlap.
POEMS fix must come before NPT/NPH fix

NPT/NPH fix must be defined in input script after all poems fixes, else the fix contribution to the pressure

virial is incorrect.
PPPM grid is too large
The global PPPM grid is larger than OFFSET in one or more dimensions. OFFSET is currently set to
4096. You likely need to decrease the requested accuracy.
PPPM grid stencil extends beyond nearest neighbor processor
This is not allowed if the kspace_modify overlap setting is no.
PPPM order < minimum allowed order
The default minimum order is 2. This can be reset by the kspace_modify minorder command.
PPPM order cannot be < 2 or > than %d
This is a limitation of the PPPM implementation in LAMMPS.
PPPM order has been reduced to 0
The auto-adjust of the order failed. You will need to set the grid size and order directly via
kspace_modify.
PPPMDisp Coulomb grid is too large
The global PPPM grid is larger than OFFSET in one or more dimensions. OFFSET is currently set to
4096. You likely need to decrease the requested accuracy.
PPPMDisp Dispersion grid is too large
The global PPPM grid is larger than OFFSET in one or more dimensions. OFFSET is currently set to
4096. You likely need to decrease the requested accuracy.
PPPMDisp coulomb order cannot be greater than %d
This is a limitation of the PPPM implementation in LAMMPS.
PRD command before simulation box is defined
The prd command cannot be used before a read_data, read_restart, or create_box command.
PRD nsteps must be multiple of t_event
Self-explanatory.
PRD t_corr must be multiple of t_event
Self-explanatory.
Package command after simulation box is defined
The package command cannot be used afer a read_data, read_restart, or create_box command.
Package cuda command without USER-CUDA installed
The USER-CUDA package must be installed via "make yes-user-cuda" before LAMMPS is built.

187

Pair body requires atom style body
Self-explanatory.
Pair body requires body style nparticle
This pair style is specific to the nparticle body style.
Pair brownian requires atom style sphere
Self-explanatory.
Pair brownian requires extended particles
One of the particles has radius 0.0.
Pair brownian requires monodisperse particles
All particles must be the same finite size.
Pair brownian/poly requires atom style sphere
Self-explanatory.
Pair brownian/poly requires extended particles
One of the particles has radius 0.0.
Pair brownian/poly requires newton pair off
Self-explanatory.
Pair coeff for hybrid has invalid style
Style in pair coeff must have been listed in pair_style command.
Pair coul/wolf requires atom attribute q
The atom style defined does not have this attribute.
Pair cutoff < Respa interior cutoff
One or more pairwise cutoffs are too short to use with the specified rRESPA cutoffs.
Fair dipole/cut requires atom attributes g, mu, torque
The atom style defined does not have these attributes.
Fair dipole/cut/gpu requires atom attributes q, mu, torque
The atom style defined does not have this attribute.
Fair dipole/long requires atom attributes q, mu, torque
The atom style defined does not have these attributes.
Pair distance < table inner cutoff
Two atoms are closer together than the pairwise table allows.
Pair distance > table outer cutoff
Two atoms are further apart than the pairwise table allows.
Pair dpd requires ghost atoms store velocity
Use the communicate vel yes command to enable this.
Pair gayberne epsilon a,b,c coeffs are not all set
Each atom type involved in pair_style gayberne must have these 3 coefficients set at least once.
Pair gayberne requires atom style ellipsoid
Self-explanatory.
FPair gayberne requires atoms with same type have same shape
Self-explanatory.
FPair gayberne/gpu requires atom style ellipsoid
Self-explanatory.
FPair gayberne/gpu requires atoms with same type have same shape
Self-explanatory.
Pair granular requires atom style sphere
Self-explanatory.
FPair granular requires ghost atoms store velocity
Use the communicate vel yes command to enable this.
FPair granular with shear history requires newton pair off
This is a current restriction of the implementation of pair granular styles with history.
Pair hybrid sub-style does not support single call
You are attempting to invoke a single() call on a pair style that doesn't support it.

188

Pair hybrid sub-style is not used
No pair_coeff command used a sub-style specified in the pair_style command.
Pair inner cutoff < Respa interior cutoff
One or more pairwise cutoffs are too short to use with the specified rRESPA cutoffs.
Pair inner cutoff >= Pair outer cutoff
The specified cutoffs for the pair style are inconsistent.
Fair line/lj requires atom style line
Self-explanatory.
Fair lj/long/dipole/long requires atom attributes mu, torque
The atom style defined does not have these attributes.
Pair lubricate requires atom style sphere
Self-explanatory.
Pair lubricate requires ghost atoms store velocity
Use the communicate vel yes command to enable this.
Pair lubricate requires monodisperse particles
All particles must be the same finite size.
Fair lubricate/poly requires atom style sphere
Self-explanatory.
Fair lubricate/poly requires extended particles
One of the particles has radius 0.0.
Fair lubricate/poly requires ghost atoms store velocity
Use the communicate vel yes command to enable this.
Fair lubricate/poly requires newton pair off
Self-explanatory.
Fair lubricateU requires atom style sphere
Self-explanatory.
Fair lubricateU requires ghost atoms store velocity
Use the communicate vel yes command to enable this.
Fair lubricateU requires monodisperse particles
All particles must be the same finite size.
Fair lubricateU/poly requires ghost atoms store velocity
Use the communicate vel yes command to enable this.
Fair lubricateU/poly requires newton pair off
Self-explanatory.
Pair peri lattice is not identical in x, y, and z
The lattice defined by the lattice command must be cubic.
Pair peri requires a lattice be defined
Use the lattice command for this purpose.
Pair peri requires an atom map, see atom_modify
Even for atomic systems, an atom map is required to find Peridynamic bonds. Use the atom_modify
command to define one.
Pair resquared epsilon a,b,c coeffs are not all set
Self-explanatory.
Pair resquared epsilon and sigma coeffs are not all set
Self-explanatory.
Pair resquared requires atom style ellipsoid
Self-explanatory.
FPair resquared requires atoms with same type have same shape
Self-explanatory.
FPair resquared/gpu requires atom style ellipsoid
Self-explanatory.
FPair resquared/gpu requires atoms with same type have same shape

189

Self-explanatory.
Fair style AIREBO requires atom IDs

This is a requirement to use the AIREBO potential.
Fair style AIREBO requires newton pair on

See the newton command. This is a restriction to use the AIREBO potential.
Fair style BOP requires atom IDs

This is a requirement to use the BOP potential.
Fair style BOP requires newton pair on

See the newton command. This is a restriction to use the BOP potential.
Fair style COMB requires atom IDs

This is a requirement to use the AIREBO potential.
Fair style COMB requires atom attribute q

Self-explanatory.
FPair style COMB requires newton pair on

See the newton command. This is a restriction to use the COMB potential.
Fair style COMB3 requires atom IDs

This is a requirement to use this potential.
Fair style COMB3 requires atom attribute ¢

The atom style defined does not have this attribute.
Fair style COMB3 requires newton pair on

See the newton command. This is a restriction to use the COMB3 potential.
Fair style LCBOP requires atom IDs

This is a requirement to use the LCBOP potential.
FPair style LCBOP requires newton pair on

See the newton command. This is a restriction to use the Tersoff potential.
FPair style MEAM requires newton pair on

See the newton command. This is a restriction to use the MEAM potential.
Fair style Stillinger-Weber requires atom IDs

This is a requirement to use the SW potential.
Fair style Stillinger-Weber requires newton pair on

See the newton command. This is a restriction to use the SW potential.
Pair style Tersoff requires atom IDs

This is a requirement to use the Tersoff potential.
Fair style Tersoff requires newton pair on

See the newton command. This is a restriction to use the Tersoff potential.
Pair style bop requires comm ghost cutoff at least 3x larger than %g

Use the communicate ghost command to set this. See the pair bop doc page for more details.

Fair style born/coul/long requires atom attribute q

An atom style that defines this attribute must be used.
Fair style born/coul/long/gpu requires atom attribute g

The atom style defined does not have this attribute.
Fair style born/coul/wolf requires atom attribute g

The atom style defined does not have this attribute.
Fair style buck/coul/cut requires atom attribute q

The atom style defined does not have this attribute.
Fair style buck/coul/long requires atom attribute q

The atom style defined does not have these attributes.
Fair style buck/coul/long/gpu requires atom attribute q

The atom style defined does not have this attribute.
Fair style buck/long/coul/long requires atom attribute q

The atom style defined does not have this attribute.
Fair style coul/cut requires atom attribute q

190

The atom style defined does not have these attributes.
Fair style coul/dsf requires atom attribute q
The atom style defined does not have this attribute.
Fair style coul/dsf/gpu requires atom attribute q
The atom style defined does not have this attribute.
Fair style coul/long/gpu requires atom attribute q
The atom style defined does not have these attributes.
Fair style does not have extra field requested by compute pair/local
The pair style does not support the pN value requested by the compute pair/local command.
Pair style does not support bond_style quartic
The pair style does not have a single() function, so it can not be invoked by bond_style quartic.
Fair style does not support compute group/group
The pair_style does not have a single() function, so it cannot be invokded by the compute group/group
command.
Fair style does not support compute pair/local
The pair style does not have a single() function, so it can not be invoked by compute pair/local.
Fair style does not support compute property/local
The pair style does not have a single() function, so it can not be invoked by fix bond/swap.
Fair style does not support fix bond/swap
The pair style does not have a single() function, so it can not be invoked by fix bond/swap.
Fair style does not support pair_write
The pair style does not have a single() function, so it can not be invoked by pair write.
Fair style does not support rRESPA inner/middle/outer
You are attempting to use rRESPA options with a pair style that does not support them.
Fair style granular with history requires atoms have IDs
Atoms in the simulation do not have IDs, so history effects cannot be tracked by the granular pair
potential.
Fair style hbond/dreiding requires an atom map, see atom_modify
Self-explanatory.
Fair style hbond/dreiding requires atom IDs
Self-explanatory.
Fair style hbond/dreiding requires molecular system
Self-explanatory.
Fair style hbond/dreiding requires newton pair on
See the newton command for details.
Fair style hybrid cannot have hybrid as an argument
Self-explanatory.
Fair style hybrid cannot have none as an argument
Self-explanatory.
Fair style is incompatible with KSpace style
If a pair style with a long-range Coulombic component is selected, then a kspace style must also be used.
Fair style lj/charmm/coul/charmm requires atom attribute q
The atom style defined does not have these attributes.
Fair style lj/charmm/coul/long requires atom attribute q
The atom style defined does not have these attributes.
Fair style lj/charmm/coul/long/gpu requires atom attribute q
The atom style defined does not have this attribute.
Fair style lj/class2/coul/cut requires atom attribute q
The atom style defined does not have this attribute.
Fair style lj/class2/coul/long requires atom attribute q
The atom style defined does not have this attribute.
Fair style lj/class2/coul/long/gpu requires atom attribute q

191

The atom style defined does not have this attribute.
Fair style lj/cut/coul/cut requires atom attribute q
The atom style defined does not have this attribute.
Fair style lj/cut/coul/cut/gpu requires atom attribute q
The atom style defined does not have this attribute.
Fair style lj/cut/coul/debye/gpu requires atom attribute q
The atom style defined does not have this attribute.
Fair style lj/cut/coul/dsf requires atom attribute q
The atom style defined does not have these attributes.
Fair style lj/cut/coul/dsf/gpu requires atom attribute q
The atom style defined does not have this attribute.
Fair style lj/cut/coul/long requires atom attribute q
The atom style defined does not have this attribute.
Fair style lj/cut/coul/long/gpu requires atom attribute q
The atom style defined does not have this attribute.
Fair style lj/cut/coul/msm requires atom attribute q
The atom style defined does not have this attribute.
Fair style lj/cut/tip4p/cut requires atom IDs
This is a requirement to use this potential.
Fair style lj/cut/tip4p/cut requires atom attribute q
The atom style defined does not have this attribute.
Fair style lj/cut/tip4dp/cut requires newton pair on
See the newton command. This is a restriction to use this potential.
Fair style lj/cut/tip4dp/long requires atom IDs
There are no atom IDs defined in the system and the TIP4P potential requires them to find O,H atoms
with a water molecule.
Fair style lj/cut/tip4p/long requires atom attribute q
The atom style defined does not have these attributes.
Fair style lj/cut/tip4p/long requires newton pair on
This is because the computation of constraint forces within a water molecule adds forces to atoms owned
by other processors.
Fair style lj/gromacs/coul/gromacs requires atom attribute q
An atom_style with this attribute is needed.
Fair style lj/long/dipole/long does not currently support respa
This feature is not yet supported.
Fair style lj/long/tip4p/long requires atom IDs
There are no atom IDs defined in the system and the TIP4P potential requires them to find O,H atoms
with a water molecule.
Fair style lj/long/tip4p/long requires atom attribute q
The atom style defined does not have these attributes.
Fair style lj/long/tip4p/long requires newton pair on
This is because the computation of constraint forces within a water molecule adds forces to atoms owned
by other processors.
Fair style nb3b/harmonic requires atom IDs
This is a requirement to use this potential.
Fair style nb3b/harmonic requires newton pair on
See the newton command. This is a restriction to use this potential.
Fair style nm/cut/coul/cut requires atom attribute q
The atom style defined does not have this attribute.
Fair style nm/cut/coul/long requires atom attribute q
The atom style defined does not have this attribute.
Pair style peri requires atom style peri

192

Self-explanatory.
Pair style reax requires atom IDs
This is a requirement to use the ReaxFF potential.
Fair style reax requires newton pair on
This is a requirement to use the ReaxFF potential.
Fair style requires a KSpace style
No kspace style is defined.
Fair style requres a KSpace style
Self-explanatory.
Fair style sw/gpu requires atom IDs
This is a requirement to use this potential.
Fair style sw/gpu requires newton pair off
See the newton command. This is a restriction to use this potential.
Fair style tip4p/cut requires atom IDs
This is a requirement to use this potential.
Fair style tipdp/cut requires atom attribute q
The atom style defined does not have this attribute.
Fair style tip4dp/cut requires newton pair on
See the newton command. This is a restriction to use this potential.
Fair style tip4dp/long requires atom IDs
There are no atom IDs defined in the system and the TIP4P potential requires them to find O,H atoms
with a water molecule.
Fair style tip4p/long requires atom attribute q
The atom style defined does not have these attributes.
Fair style tipdp/long requires newton pair on
This is because the computation of constraint forces within a water molecule adds forces to atoms owned
by other processors.
Fair table cutoffs must all be equal to use with KSpace
When using pair style table with a long-range KSpace solver, the cutoffs for all atom type pairs must all
be the same, since the long-range solver starts at that cutoff.
Pair table parameters did not set N
List of pair table parameters must include N setting.
Fair tersoff/zbl requires metal or real units
This is a current restriction of this pair potential.
Fair tri/lj requires atom style tri
Self-explanatory.
FPair yukawa/colloid requires atom style sphere
Self-explantory.
Pair yukawa/colloid requires atoms with same type have same radius
Self-explantory.
Pair yukawa/colloid/gpu requires atom style sphere
Self-explanatory.
PairKIM only works with 3D problems
This is a current limitation.
Pair_coeff command before pair_style is defined
Self-explanatory.
Pair_coeff command before simulation box is defined
The pair_coeff command cannot be used before a read_data, read_restart, or create_box command.
Pair_modify command before pair_style is defined
Self-explanatory.
Pair_write command before pair_style is defined
Self-explanatory.

193

Farticle on or inside fix wall surface
Particles must be "exterior" to the wall in order for energy/force to be calculated.
Farticle on or inside surface of region used in fix wall/region
Particles must be "exterior" to the region surface in order for energy/force to be calculated.
Per-atom compute in equal-style variable formula
Equal-style variables cannot use per-atom quantities.
Per-atom energy was not tallied on needed timestep
You are using a thermo keyword that requires potentials to have tallied energy, but they didn't on this
timestep. See the variable doc page for ideas on how to make this work.
Per-atom fix in equal-style variable formula
Equal-style variables cannot use per-atom quantities.
Per-atom virial was not tallied on needed timestep
You are using a thermo keyword that requires potentials to have tallied the virial, but they didn't on this
timestep. See the variable doc page for ideas on how to make this work.
Per-processor system is too big
The number of owned atoms plus ghost atoms on a single processor must fit in 32-bit integer.
Potential energy ID for fix neb does not exist
Self-explanatory.
Potential energy ID for fix nvt/nph/npt does not exist
A compute for potential energy must be defined.
Potential file has duplicate entry
The potential file for a SW or Tersoff potential has more than one entry for the same 3 ordered elements.
Potential file is missing an entry
The potential file for a SW or Tersoff potential does not have a needed entry.
Power by 0 in variable formula
Self-explanatory.
Pressure ID for fix box/relax does not exist
The compute ID needed to compute pressure for the fix does not exist.
Pressure ID for fix modify does not exist
Self-explanatory.
Pressure ID for fix npt/nph does not exist
Self-explanatory.
Pressure ID for fix press/berendsen does not exist
The compute ID needed to compute pressure for the fix does not exist.
Pressure ID for fix rigid npt/nph does not exist
Self-explanatory.
Pressure ID for thermo does not exist
The compute ID needed to compute pressure for thermodynamics does not exist.
Pressure control can not be used with fix nvt
Self-explanatory.
Pressure control can not be used with fix nvt/asphere
Self-explanatory.
Pressure control can not be used with fix nvt/sllod
Self-explanatory.
Pressure control can not be used with fix nvt/sphere
Self-explanatory.
Pressure control must be used with fix nph
Self-explanatory.
Pressure control must be used with fix nph/asphere
Self-explanatory.
Pressure control must be used with fix nph/sphere
Self-explanatory.

194

Pressure control must be used with fix nphug
A pressure control keyword (iso, aniso, tri, X, y, or z) must be provided.
Pressure control must be used with fix npt
Self-explanatory.
Pressure control must be used with fix npt/asphere
Self-explanatory.
Pressure control must be used with fix npt/sphere
Self-explanatory.
Processor count in z must be 1 for 2d simulation
Self-explanatory.
Processor partitions are inconsistent
The total number of processors in all partitions must match the number of processors LAMMPS is
running on.
Processors command after simulation box is defined
The processors command cannot be used after a read_data, read_restart, or create_box command.
Processors custom grid file is inconsistent
The vales in the custom file are not consistent with the number of processors you are running on or the
Px,Py,Pz settings of the processors command. Or there was not a setting for every processor.
Processors grid numa and map style are incompatible
Using numa for gstyle in the processors command requires using cart for the map option.
Processors part option and grid style are incompatible
Cannot use gstyle numa or custom with the part option.
Processors twogrid requires proc count be a multiple of core count
Self-explanatory.
Pstart and Pstop must have the same value
Self-explanatory.
RO < O for fix spring command
Equilibrium spring length is invalid.
Read dump of atom property that isn't allocated
Self-explanatory.
Read restart MPI-10 input not allowed with % in filename
This is because a % signifies one file per processor and MPI-IO creates one large file for all processors.
Read_dump command before simulation box is defined
The read_dump command cannot be used before a read_data, read_restart, or create_box command.
Read_dump field not found in dump file
Self-explanatory.
Read_dump triclinic status does not match simulation
Both the dump snapshot and the current LAMMPS simulation must be using either an orthogonal or
triclinic box.
Read_dump xyz fields do not have consistent scaling/wrapping
Self-explanatory.
Reading from MPI-10 filename when MPIIO package is not installed
Self-explanatory.
Reax_defs.h setting for NATDEF is too small
Edit the setting in the ReaxFF library and re-compile the library and re-build LAMMPS.
Reax_defs.h setting for NNEIGHMAXDEF is too small
Edit the setting in the ReaxFF library and re-compile the library and re-build LAMMPS.
Receiving partition in processors part command is already a receiver
Cannot specify a partition to be a receiver twice.
Region ID for compute reduce/region does not exist
Self-explanatory.
Region ID for compute temp/region does not exist

195

Self-explanatory.
Region ID for dump custom does not exist

Self-explanatory.

Region ID for fix addforce does not exist
Self-explanatory.

Region ID for fix ave/spatial does not exist
Self-explanatory.

Region ID for fix aveforce does not exist
Self-explanatory.

Region ID for fix deposit does not exist
Self-explanatory.

Region ID for fix efield does not exist
Self-explanatory.

Region ID for fix evaporate does not exist
Self-explanatory.

Region ID for fix gcmc does not exist
Self-explanatory.

Region ID for fix heat does not exist
Self-explanatory.

Region ID for fix setforce does not exist
Self-explanatory.

Region ID for fix wall/region does not exist
Self-explanatory.

Region ID in variable formula does not exist
Self-explanatory.

Region cannot have 0 length rotation vector
Self-explanatory.

Region intersect region ID does not exist
Self-explanatory.

Region union or intersect cannot be dynamic
The sub-regions can be dynamic, but not the combined region.
Region union region ID does not exist
One or more of the region IDs specified by the region union command does not exist.
Replacing a fix, but new style != old style
A fix ID can be used a 2nd time, but only if the style matches the previous fix. In this case it is assumed
you with to reset a fix's parameters. This error may mean you are mistakenly re-using a fix ID when you
do not intend to.
Replicate command before simulation box is defined
The replicate command cannot be used before a read_data, read_restart, or create_box command.
Replicate did not assign all atoms correctly
Atoms replicated by the replicate command were not assigned correctly to processors. This is likely due
to some atom coordinates being outside a non-periodic simulation box.
Replicated system atom IDs are too big
See the setting for tagint in the src/lmptype.h file.
Replicated system is too big
See the setting for bigint in the src/Imptype.h file.
Rerun command before simulation box is defined
The rerun command cannot be used before a read_data, read_restart, or create_box command.
Rerun dump file does not contain requested snapshot
Self-explanatory.
Resetting timestep is not allowed with fix move
This is because fix move is moving atoms based on elapsed time.

196

Respa inner cutoffs are invalid
The first cutoff must be <= the second cutoff.
Respa levels must be >= 1
Self-explanatory.
Respa middle cutoffs are invalid
The first cutoff must be <= the second cutoff.
Restart file MPI-10 output not allowed with % in filename
This is because a % signifies one file per processor and MPI-IO creates one large file for all processors.
Restart file byte ordering is not recognized
The file does not appear to be a LAMMPS restart file since it doesn't contain a recognized byte-orderomg
flag at the beginning.
Restart file byte ordering is swapped
The file was written on a machine with different byte-ordering than the machine you are reading it on.
Convert it to a text data file instead, on the machine you wrote it on.
Restart file incompatible with current version
This is probably because you are trying to read a file created with a version of LAMMPS that is too old
compared to the current version. Use your older version of LAMMPS and convert the restart file to a data
file.
Restart file is a MPI-10 file
The file is inconsistent with the filename you specified for it.
Restart file is a multi-proc file
The file is inconsistent with the filename you specified for it.
Restart file is not a MPI-10 file
The file is inconsistent with the filename you specified for it.
Restart file is not a multi-proc file
The file is inconsistent with the filename you specified for it.
Restart variable returned a bad timestep
The variable must return a timestep greater than the current timestep.
Restrain atoms %d %d %d %d missing on proc %d at step %ld
The 4 atoms in a restrain dihedral specified by the fix restrain command are not all accessible to a
processor. This probably means an atom has moved too far.
Restrain atoms %d %d %d missing on proc %d at step %ld
The 3 atoms in a restrain angle specified by the fix restrain command are not all accessible to a processor.
This probably means an atom has moved too far.
Restrain atoms %d %d missing on proc %d at step %ld
The 2 atoms in a restrain bond specified by the fix restrain command are not all accessible to a processor.
This probably means an atom has moved too far.
Reuse of compute 1D
A compute ID cannot be used twice.
Reuse of dump ID
A dump ID cannot be used twice.
Reuse of molecule template ID
The template IDs must be unique.
Reuse of region ID
A region ID cannot be used twice.
Rigid body atoms %d %d missing on proc %d at step %ld
This means that an atom cannot find the atom that owns the rigid body it is part of, or vice versa. The
solution is to use the communicate cutoff command to insure ghost atoms are acquired from far enough
away to encompass the max distance printed when the fix rigid/small command was invoked.
Rigid body has degenerate moment of inertia
Fix poems will only work with bodies (collections of atoms) that have non-zero principal moments of
inertia. This means they must be 3 or more non-collinear atoms, even with joint atoms removed.

197

Rigid fix must come before NPT/NPH fix
NPT/NPH fix must be defined in input script after all rigid fixes, else the rigid fix contribution to the
pressure virial is incorrect.
Rmask function in equal-style variable formula
Rmask is per-atom operation.
Run command before simulation box is defined
The run command cannot be used before a read_data, read_restart, or create_box command.
Run command start value is after start of run
Self-explanatory.
Run command stop value is before end of run
Self-explanatory.
Run_style command before simulation box is defined
The run_style command cannot be used before a read_data, read_restart, or create_box command.
SRD bin size for fix srd differs from user request
Fix SRD had to adjust the bin size to fit the simulation box. See the cubic keyword if you want this
message to be an error vs warning.
SRD bins for fix srd are not cubic enough
The bin shape is not within tolerance of cubic. See the cubic keyword if you want this message to be an
error vs warning.
SRD particle %d started inside big particle %d on step %ld bounce %d
See the inside keyword if you want this message to be an error vs warning.
Same dimension twice in fix ave/spatial
Self-explanatory.
Sending partition in processors part command is already a sender
Cannot specify a partition to be a sender twice.
Set command before simulation box is defined
The set command cannot be used before a read_data, read_restart, or create_box command.
Set command floating point vector does not exist
Self-explanatory.
Set command integer vector does not exist
Self-explanatory.
Set command with no atoms existing
No atoms are yet defined so the set command cannot be used.
Set region ID does not exist
Region ID specified in set command does not exist.
Shake angles have different bond types
All 3-atom angle-constrained SHAKE clusters specified by the fix shake command that are the same
angle type, must also have the same bond types for the 2 bonds in the angle.
Shake atoms %d %d Y%0d %od missing on proc %d at step %ld
The 4 atoms in a single shake cluster specified by the fix shake command are not all accessible to a
processor. This probably means an atom has moved too far.
Shake atoms %d %d %d missing on proc %d at step %ld
The 3 atoms in a single shake cluster specified by the fix shake command are not all accessible to a
processor. This probably means an atom has moved too far.
Shake atoms %d %d missing on proc %d at step %ld
The 2 atoms in a single shake cluster specified by the fix shake command are not all accessible to a
processor. This probably means an atom has moved too far.
Shake cluster of more than 4 atoms
A single cluster specified by the fix shake command can have no more than 4 atoms.
Shake clusters are connected
A single cluster specified by the fix shake command must have a single central atom with up to 3 other
atoms bonded to it.

198

Shake determinant = 0.0
The determinant of the matrix being solved for a single cluster specified by the fix shake command is
numerically invalid.
Shake fix must come before NPT/NPH fix
NPT fix must be defined in input script after SHAKE fix, else the SHAKE fix contribution to the pressure
virial is incorrect.
Shear history overflow, boost neigh_modify one
There are too many neighbors of a single atom. Use the neigh_modify command to increase the max
number of neighbors allowed for one atom. You may also want to boost the page size.
Small to big integers are not sized correctly
This error occurs whenthe sizes of smallint, imageint, tagint, bigint, as defined in src/Imptype.h are not
what is expected. Contact the developers if this occurs.
Smallint setting in Imptype.h is invalid
It has to be the size of an integer.
Smallint setting in Imptype.h is not compatible
Smallint stored in restart file is not consistent with LAMMPS version you are running.
Specified processors != physical processors
The 3d grid of processors defined by the processors command does not match the number of processors
LAMMPS is being run on.
Specified target stress must be uniaxial or hydrostatic
Self-explanatory.
Sqrt of negative value in variable formula
Self-explanatory.
Substitution for illegal variable
Input script line contained a variable that could not be substituted for.
Support for writing images in JPEG format not included
LAMMPS was not built with the -DLAMMPS_JPEG switch in the Makefile.
Support for writing images in PNG format not included
LAMMPS was not built with the -DLAMMPS_PNG switch in the Makefile.
Support for writing movies not included
LAMMPS was not built with the -DLAMMPS_FFMPEG switch in the Makefile
System in data file is too big
See the setting for bigint in the src/lmptype.h file.
System is not charge neutral, net charge = %g
The total charge on all atoms on the system is not 0.0, which is not valid for the long-range Coulombic
solvers.
TAD nsteps must be multiple of t_event
Self-explanatory.
TIP4P hydrogen has incorrect atom type
The TIP4P pairwise computation found an H atom whose type does not agree with the specified H type.
TIP4P hydrogen is missing
The TIP4P pairwise computation failed to find the correct H atom within a water molecule.
TMD target file did not list all group atoms
The target file for the fix tmd command did not list all atoms in the fix group.
Tad command before simulation box is defined
Self-explanatory.
Tagint setting in Imptype.h is invalid
Tagint must be as large or larger than smallint.
Tagint setting in Imptype.h is not compatible
Format of tagint stored in restart file is not consistent with LAMMPS version you are running. See the
settings in src/lmptype.h
Target temperature for fix nvt/npt/nph cannot be 0.0

199

Self-explanatory.

Target temperature for fix rigid/npt cannot be 0.0
Self-explanatory.

Target temperature for fix rigid/nvt cannot be 0.0
Self-explanatory.

Temper command before simulation box is defined
The temper command cannot be used before a read_data, read_restart, or create_box command.

Temperature ID for fix bond/swap does not exist
Self-explanatory.

Temperature ID for fix box/relax does not exist
Self-explanatory.

Temperature ID for fix nvt/npt does not exist
Self-explanatory.

Temperature ID for fix press/berendsen does not exist
Self-explanatory.

Temperature ID for fix rigid nvt/npt/nph does not exist
Self-explanatory.

Temperature ID for fix temp/berendsen does not exist
Self-explanatory.

Temperature ID for fix temp/rescale does not exist
Self-explanatory.

Temperature control can not be used with fix nph
Self-explanatory.

Temperature control can not be used with fix nph/asphere
Self-explanatory.

Temperature control can not be used with fix nph/sphere
Self-explanatory.

Temperature control must be used with fix nphug
The temp keyword must be provided.

Temperature control must be used with fix npt
Self-explanatory.

Temperature control must be used with fix npt/asphere
Self-explanatory.

Temperature control must be used with fix npt/sphere
Self-explanatory.

Temperature control must be used with fix nvt
Self-explanatory.

Temperature control must be used with fix nvt/asphere
Self-explanatory.

Temperature control must be used with fix nvt/sllod
Self-explanatory.

Temperature control must be used with fix nvt/sphere
Self-explanatory.

Temperature for fix nvt/sllod does not have a bias
The specified compute must compute temperature with a bias.

Tempering could not find thermo_pe compute
This compute is created by the thermo command. It must have been explicitly deleted by a uncompute
command.

Tempering fix ID is not defined
The fix ID specified by the temper command does not exist.

Tempering temperature fix is not valid
The fix specified by the temper command is not one that controls temperature (nvt or langevin).

200

Test_descriptor_string already allocated
This is an internal error. Contact the developers.
The package gpu command is required for gpu styles
Self-explanatory.
Thermo and fix not computed at compatible times
Fixes generate values on specific timesteps. The thermo output does not match these timesteps.
Thermo compute array is accessed out-of-range
Self-explanatory.
Thermo compute does not compute array
Self-explanatory.
Thermo compute does not compute scalar
Self-explanatory.
Thermo compute does not compute vector
Self-explanatory.
Thermo compute vector is accessed out-of-range
Self-explanatory.
Thermo custom variable cannot be indexed
Self-explanatory.
Thermo custom variable is not equal-style variable
Only equal-style variables can be output with thermodynamics, not atom-style variables.
Thermo every variable returned a bad timestep
The variable must return a timestep greater than the current timestep.
Thermo fix array is accessed out-of-range
Self-explanatory.
Thermo fix does not compute array
Self-explanatory.
Thermo fix does not compute scalar
Self-explanatory.
Thermo fix does not compute vector
Self-explanatory.
Thermo fix vector is accessed out-of-range
Self-explanatory.
Thermo keyword in variable requires thermo to use/init pe
You are using a thermo keyword in a variable that requires potential energy to be calculated, but your
thermo output does not use it. Add it to your thermo output.
Thermo keyword in variable requires thermo to use/init press
You are using a thermo keyword in a variable that requires pressure to be calculated, but your thermo
output does not use it. Add it to your thermo output.
Thermo keyword in variable requires thermo to use/init temp
You are using a thermo keyword in a variable that requires temperature to be calculated, but your thermo
output does not use it. Add it to your thermo output.
Thermo style does not use press
Cannot use thermo_modify to set this parameter since the thermo_style is not computing this quantity.
Thermo style does not use temp
Cannot use thermo_modify to set this parameter since the thermo_style is not computing this quantity.
Thermo_modify int format does not contain d character
Self-explanatory.
Thermo_modify pressure ID does not compute pressure
The specified compute ID does not compute pressure.
Thermo_modify temperature ID does not compute temperature
The specified compute ID does not compute temperature.
Thermo_style command before simulation box is defined

201

The thermo_style command cannot be used before a read_data, read_restart, or create_box command.
This variable thermo keyword cannot be used between runs
Keywords that refer to time (such as cpu, elapsed) do not make sense in between runs.
Threshhold for an atom property that isn't allocated
A dump threshhold has been requested on a quantity that is not defined by the atom style used in this
simulation.
Timestep must be >= 0
Specified timestep is invalid.
Too big a problem to use velocity create loop all
The system size must fit in a 32-bit integer to use this option.
Too big a timestep
Specified timestep is too large.
Too big a timestep for dump dcd
The timestep must fit in a 32-bit integer to use this dump style.
Too big a timestep for dump xtc
The timestep must fit in a 32-bit integer to use this dump style.
Too few bits for lookup table
Table size specified via pair_modify command does not work with your machine's floating point
representation.
Too many MSM grid levels
The max number of MSM grid levels is hardwired to 10.
Too many atom pairs for pair bop
The number of atomic pairs exceeds the expected number. Check your atomic structure to ensure that it is
realistic.
Too many atom sorting bins
This is likely due to an immense simulation box that has blown up to a large size.
Too many atom triplets for pair bop
The number of three atom groups for angle determinations exceeds the expected number. Check your
atomic structrure to ensure that it is realistic.
Too many atoms for dump dcd
The system size must fit in a 32-bit integer to use this dump style.
Too many atoms for dump xtc
The system size must fit in a 32-bit integer to use this dump style.
Too many atoms to dump sort
Cannot sort when running with more than 231 atoms.
Too many exponent bits for lookup table
Table size specified via pair_modify command does not work with your machine's floating point
representation.
Too many groups
The maximum number of atom groups (including the "all" group) is given by MAX_GROUP in
group.cpp and is 32.
Too many iterations
You must use a number of iterations that fit in a 32-bit integer for minimization.
Too many lines in one body in data file - boost MAXBODY
MAXBODY is a setting at the top of the src/read_data.cpp file. Set it larger and re-compile the code.
Too many local+ghost atoms for neighbor list
The number of nlocal + nghost atoms on a processor is limited by the size of a 32-bit integer with 2 bits
removed for masking 1-2, 1-3, 1-4 neighbors.
Too many mantissa bits for lookup table
Table size specified via pair_modify command does not work with your machine's floating point
representation.
Too many masses for fix shake

202

The fix shake command cannot list more masses than there are atom types.
Too many molecules for compute
The limit is 2”31 = ~2 billion molecules.
Too many molecules for fix poems
The limit is 2”31 = ~2 billion molecules.
Too many molecules for fix rigid
The limit is 2”31 = ~2 billion molecules.
Too many neighbor bins
This is likely due to an immense simulation box that has blown up to a large size.
Too many timesteps
The cummulative timesteps must fit in a 64-bit integer.
Too many timesteps for NEB
You must use a number of timesteps that fit in a 32-bit integer for NEB.
Too many total atoms
See the setting for bigint in the src/Imptype.h file.
Too many total bits for bitmapped lookup table
Table size specified via pair_modify command is too large. Note that a value of N generates a 2N size
table.
Too much buffered per-proc info for dump
The size of the buffered string must fit in a 32-bit integer for a dump.
Too much per-proc info for dump
Number of local atoms times number of columns must fit in a 32-bit integer for dump.
Tree structure in joint connections
Fix poems cannot (yet) work with coupled bodies whose joints connect the bodies in a tree structure.
Triclinic box skew is too large
The displacement in a skewed direction must be less than half the box length in that dimension. E.g. the
xy tilt must be between -half and +half of the x box length. This constraint can be relaxed by using the
box tilt command.
Tried to convert a double to int, but input_double > INT_MAX
Self-explanatory.
Two groups cannot be the same in fix spring couple
Self-explanatory.
USER-CUDA mode requires CUDA variant of min style
CUDA mode is enabled, so the min style must include a cuda suffix.
USER-CUDA mode requires CUDA variant of run style
CUDA mode is enabled, so the run style must include a cuda suffix.
USER-CUDA package requires a cuda enabled atom_style
Self-explanatory.
Unable to initialize accelerator for use
There was a problem initializing an accelerator for the gpu package
Unbalanced quotes in input line
No matching end double quote was found following a leading double quote.
Unexpected end of -reorder file
Self-explanatory.
Unexpected end of custom file
Self-explanatory.
Unexpected end of data file
LAMMPS hit the end of the data file while attempting to read a section. Something is wrong with the
format of the data file.
Unexpected end of dump file
A read operation from the file failed.
Unexpected end of fix rigid file

203

A read operation from the file failed.
Unexpected end of fix rigid/small file
A read operation from the file failed.
Unexpected end of molecule file
Self-explanatory.
Unexpected end of neb file
A read operation from the file failed.
Units command after simulation box is defined
The units command cannot be used after a read_data, read_restart, or create_box command.
Universe/uloop variable count < # of partitions
A universe or uloop style variable must specify a number of values >= to the number of processor
partitions.
Unknown command: %s
The command is not known to LAMMPS. Check the input script.
Unknown error in GPU library
Self-explanatory.
Unknown identifier in data file: %s
A section of the data file cannot be read by LAMMPS.
Unknown section in molecule file
Self-explanatory.
Unknown table style in angle style table
Self-explanatory.
Unknown table style in bond style table
Self-explanatory.
Unknown table style in pair_style command
Style of table is invalid for use with pair_style table command.
Unknown unit_style
Self-explanatory. Check the input script or data file.
Unrecognized lattice type in MEAM file 1
The lattice type in an entry of the MEAM library file is not valid.
Unrecognized lattice type in MEAM file 2
The lattice type in an entry of the MEAM parameter file is not valid.
Unrecognized pair style in compute pair command
Self-explanatory.
Unrecognized virial argument in pair_style command
Only two options are supported: LAMMPSvirial and KIMyvirial
Unsupported mixing rule in kspace_style ewald/disp
Only geometric mixing is supported.
Unsupported order in kspace_style ewald/disp
Only 1/1"6 dispersion or dipole terms are supported.
Unsupported order in kspace_style pppm/disp, pair_style %os
Only pair styles with 1/r and 1/r*6 dependence are currently supported.
Using fix nvt/sllod with inconsistent fix deform remap option
Fix nvt/sllod requires that deforming atoms have a velocity profile provided by "remap v" as a fix deform
option.
Using fix nvt/sllod with no fix deform defined
Self-explanatory.
Using fix srd with inconsistent fix deform remap option
When shearing the box in an SRD simulation, the remap v option for fix deform needs to be used.
Using pair lubricate with inconsistent fix deform remap option
Must use remap v option with fix deform with this pair style.
Using pair lubricate/poly with inconsistent fix deform remap option

204

If fix deform is used, the remap v option is required.
Variable ID in variable formula does not exist
Self-explanatory.
Variable evaluation before simulation box is defined

Cannot evaluate a compute or fix or atom-based value in a variable before the simulation has been setup.

Variable evaluation in fix wall gave bad value
The returned value for epsilon or sigma < 0.0.
Variable evaluation in region gave bad value
Variable returned a radius < 0.0.
Variable for compute ti is invalid style
Self-explanatory.
Variable for dump every is invalid style
Only equal-style variables can be used.
Variable for dump image center is invalid style
Must be an equal-style variable.
Variable for dump image persp is invalid style
Must be an equal-style variable.
Variable for dump image phi is invalid style
Must be an equal-style variable.
Variable for dump image theta is invalid style
Must be an equal-style variable.
Variable for dump image zoom is invalid style
Must be an equal-style variable.
Variable for fix adapt is invalid style
Only equal-style variables can be used.
Variable for fix addforce is invalid style
Self-explanatory.
Variable for fix aveforce is invalid style
Only equal-style variables can be used.
Variable for fix deform is invalid style
The variable must be an equal-style variable.
Variable for fix efield is invalid style

The variable must be an equal- or atom-style variable.

Variable for fix gravity is invalid style

Only equal-style variables can be used.
Variable for fix heat is invalid style

Only equal-style or atom-style variables can be used.
Variable for fix indent is invalid style

Only equal-style variables can be used.
Variable for fix indent is not equal style

Only equal-style variables can be used.
Variable for fix langevin is invalid style

It must be an equal-style variable.
Variable for fix move is invalid style

Only equal-style variables can be used.
Variable for fix setforce is invalid style

Only equal-style variables can be used.
Variable for fix temp/berendsen is invalid style

Only equal-style variables can be used.
Variable for fix temp/rescale is invalid style

Only equal-style variables can be used.
Variable for fix wall is invalid style

205

Only equal-style variables can be used.

Variable for fix wall/reflect is invalid style
Only equal-style variables can be used.

Variable for fix wall/srd is invalid style
Only equal-style variables can be used.

Variable for group is invalid style
Only atom-style variables can be used.

Variable for region cylinder is invalid style
Only equal-style varaibles are allowed.

Variable for region is invalid style
Only equal-style variables can be used.

Variable for region is not equal style
Self-explanatory.

Variable for region sphere is invalid style
Only equal-style varaibles are allowed.

Variable for restart is invalid style
Only equal-style variables can be used.

Variable for set command is invalid style
Only atom-style variables can be used.

Variable for thermo every is invalid style
Only equal-style variables can be used.

Variable for velocity set is invalid style
Only atom-style variables can be used.

Variable for voronoi radius is not atom style
The variable used for this command must be an atom-style variable. See the variable command for
details.

Variable formula compute array is accessed out-of-range
Self-explanatory.

Variable formula compute vector is accessed out-of-range
Self-explanatory.

Variable formula fix array is accessed out-of-range
Self-explanatory.

Variable formula fix vector is accessed out-of-range
Self-explanatory.

Variable has circular dependency
A circular dependency is when variable "a" in used by variable "b" and variable "b" is also used by
varaible "a". Circular dependencies with longer chains of dependence are also not allowed.

Variable name for compute atom/molecule does not exist
Self-explanatory.

Variable name for compute reduce does not exist
Self-explanatory.

Variable name for compute ti does not exist
Self-explanatory.

Variable name for dump every does not exist
Self-explanatory.

Variable name for dump image center does not exist
Self-explanatory.

Variable name for dump image persp does not exist
Self-explanatory.

Variable name for dump image phi does not exist
Self-explanatory.

Variable name for dump image theta does not exist

206

Self-explanatory.
Variable name for dump image zoom does not exist

Self-explanatory.

Variable name for fix adapt does not exist
Self-explanatory.

Variable name for fix addforce does not exist
Self-explanatory.

Variable name for fix ave/atom does not exist
Self-explanatory.

Variable name for fix ave/correlate does not exist
Self-explanatory.

Variable name for fix ave/histo does not exist
Self-explanatory.

Variable name for fix ave/spatial does not exist
Self-explanatory.

Variable name for fix ave/time does not exist
Self-explanatory.

Variable name for fix aveforce does not exist
Self-explanatory.

Variable name for fix deform does not exist
Self-explantory.

Variable name for fix efield does not exist
Self-explanatory.

Variable name for fix gravity does not exist
Self-explanatory.

Variable name for fix heat does not exist
Self-explanatory.

Variable name for fix indent does not exist
Self-explanatory.

Variable name for fix langevin does not exist
Self-explanatory.

Variable name for fix move does not exist
Self-explanatory.

Variable name for fix setforce does not exist
Self-explanatory.

Variable name for fix store/state does not exist
Self-explanatory.

Variable name for fix temp/berendsen does not exist
Self-explanatory.

Variable name for fix temp/rescale does not exist
Self-explanatory.

Variable name for fix wall does not exist
Self-explanatory.

Variable name for fix wall/reflect does not exist
Self-explanatory.

Variable name for fix wall/srd does not exist
Self-explanatory.

Variable name for group does not exist
Self-explanatory.

Variable name for region cylinder does not exist
Self-explanatory.

Variable name for region does not exist

207

Self-explanatory.
Variable name for region sphere does not exist
Self-explanatory.
Variable name for restart does not exist
Self-explanatory.
Variable name for set command does not exist
Self-explanatory.
Variable name for thermo every does not exist
Self-explanatory.
Variable name for velocity set does not exist
Self-explanatory.
Variable name for voronoi radius does not exist
Self-explanatory.
Variable name must be alphanumeric or underscore characters
Self-explanatory.
Variable uses atom property that isn't allocated
Self-explanatory.
Velocity command before simulation box is defined
The velocity command cannot be used before a read_data, read_restart, or create_box command.
Velocity command with no atoms existing
A velocity command has been used, but no atoms yet exist.
Velocity ramp in z for a 2d problem
Self-explanatory.
Velocity rigid used with non-rigid fix-ID
Self-explanatory.
Velocity temperature ID does not compute temperature
The compute ID given to the velocity command must compute temperature.
Verlet/split does not yet support TIP4P
This is a current limitation.
Verlet/split requires 2 partitions
See the -partition command-line switch.
Verlet/split requires Rspace partition layout be multiple of Kspace partition layout in each dim
This is controlled by the processors command.
Verlet/split requires Rspace partition size be multiple of Kspace partition size
This is so there is an equal number of Rspace processors for every Kspace processor.
Virial was not tallied on needed timestep
You are using a thermo keyword that requires potentials to have tallied the virial, but they didn't on this
timestep. See the variable doc page for ideas on how to make this work.
Wall defined twice in fix wall command
Self-explanatory.
Wall defined twice in fix wall/reflect command
Self-explanatory.
Wall defined twice in fix wall/srd command
Self-explanatory.
Water H epsilon must be 0.0 for pair style lj/cut/tip4p/cut
This is because LAMMPS does not compute the Lennard-Jones interactions with these particles for
efficiency reasons.
Water H epsilon must be 0.0 for pair style lj/cut/tip4p/long
This is because LAMMPS does not compute the Lennard-Jones interactions with these particles for
efficiency reasons.
Water H epsilon must be 0.0 for pair style lj/long/tip4dp/long
This is because LAMMPS does not compute the Lennard-Jones interactions with these particles for

208

efficiency reasons.
World variable count doesn't match # of partitions
A world-style variable must specify a number of values equal to the number of processor partitions.
Write_data command before simulation box is defined
Self-explanatory.
Write_restart command before simulation box is defined
The write_restart command cannot be used before a read_data, read_restart, or create_box command.
Writing to MPI-10 filename when MPIIO package is not installed
Self-explanatory.
Zero length rotation vector with displace_atoms
Self-explanatory.
Zero length rotation vector with fix move
Self-explanatory.
Zero-length lattice orient vector
Self-explanatory.

Warnings:

Adjusting Coulombic cutoff for MSM, new cutoff = %g
The adjust/cutoff command is turned on and the Coulombic cutoff has been adjusted to match the
user-specified accuracy.
Angle atoms missing at step %ld
One or more of 3 atoms needed to compute a particular angle are missing on this processor. Typically this
is because the pairwise cutoff is set too short or the angle has blown apart and an atom is too far away.
Atom with molecule ID = 0 included in compute molecule group
The group used in a compute command that operates on moleclues includes atoms with no molecule ID.
This is probably not what you want.
Bond atom missing in box size check
The 2nd atoms needed to compute a particular bond is missing on this processor. Typically this is because
the pairwise cutoff is set too short or the bond has blown apart and an atom is too far away.
Bond atom missing in image check
The 2nd atom in a particular bond is missing on this processor. Typically this is because the pairwise
cutoff is set too short or the bond has blown apart and an atom is too far away.
Bond atoms missing at step %ld
The 2nd atom needed to compute a particular bond is missing on this processor. Typically this is because
the pairwise cutoff is set too short or the bond has blown apart and an atom is too far away.
Bond/angle/dihedral extent > half of periodic box length
This is a restriction because LAMMPS can be confused about which image of an atom in the bonded
interaction is the correct one to use. "Extent" in this context means the maximum end-to-end length of the
bond/angle/dihedral. LAMMPS computes this by taking the maximum bond length, multiplying by the
number of bonds in the interaction (e.g. 3 for a dihedral) and adding a small amount of stretch.
Both groups in compute group/group have a net charge; the Kspace boundary correction to energy will be
non-zero
Self-explantory.
Broken bonds will not alter angles, dihedrals, or impropers
See the doc page for fix bond/break for more info on this restriction.
Building an occasional neighobr list when atoms may have moved too far
This can cause LAMMPS to crash when the neighbor list is built. The solution is to check for building the
regular neighbor lists more frequently.
Cannot count rigid body degrees-of-freedom before bodies are fully initialized
This means the temperature associated with the rigid bodies may be incorrect on this timestep.
Cannot include log terms without 1/r terms, setting flagHI to 1

209

Self-explanatory.
Cannot include log terms without 1/r terms, setting flagHI to 1.
Self-explanatory.
Charges are set, but coulombic solver is not used
Self-explanatory.
Compute cna/atom cutoff may be too large to find ghost atom neighbors
The neighbor cutoff used may not encompass enough ghost atoms to perform this operation correctly.
Computing temperature of portions of rigid bodies
The group defined by the temperature compute does not encompass all the atoms in one or more rigid
bodies, so the change in degrees-of-freedom for the atoms in those partial rigid bodies will not be
accounted for.
Created bonds will not create angles, dihedrals, or impropers
See the doc page for fix bond/create for more info on this restriction.
Dihedral atoms missing at step %ld
One or more of 4 atoms needed to compute a particular dihedral are missing on this processor. Typically
this is because the pairwise cutoff is set too short or the dihedral has blown apart and an atom is too far
away.
Dihedral problem: %d %ld %d %od Yod %od
Conformation of the 4 listed dihedral atoms is extreme; you may want to check your simulation geometry.
Dump dcd/xtc timestamp may be wrong with fix dt/reset
If the fix changes the timestep, the dump dcd file will not reflect the change.
Error in splitting of dispersion coeffs is estimated %g%
Error is greater than 0.0001 percent.
Ewald/disp Newton solver failed, using old method to estimate g_ewald
Self-explanatory. Choosing a different cutoff value may help.
FENE bond too long: %ld %d %d %g
A FENE bond has stretched dangerously far. It's interaction strength will be truncated to attempt to
prevent the bond from blowing up.
FENE bond too long: %ld %g
A FENE bond has stretched dangerously far. It's interaction strength will be truncated to attempt to
prevent the bond from blowing up.
Fix SRD walls overlap but fix srd overlap not set
You likely want to set this in your input script.
Fix bond/swap will ignore defined angles
See the doc page for fix bond/swap for more info on this restriction.
Fix evaporate may delete atom with non-zero molecule 1D
This is probably an error, since you should not delete only one atom of a molecule.
Fix move does not update angular momentum
Atoms store this quantity, but fix move does not (yet) update it.
Fix move does not update quaternions
Atoms store this quantity, but fix move does not (yet) update it.
Fix recenter should come after all other integration fixes
Other fixes may change the position of the center-of-mass, so fix recenter should come last.
Fix srd SRD moves may trigger frequent reneighboring
This is because the SRD particles may move long distances.
Fix srd grid size > 1/4 of big particle diameter
This may cause accuracy problems.
Fix srd particle moved outside valid domain
This may indicate a problem with your simulation parameters.
Fix srd particles may move > big particle diameter
This may cause accuracy problems.
Fix srd viscosity < 0.0 due to low SRD density

210

This may cause accuracy problems.

Fix thermal/conductivity comes before fix ave/spatial
The order of these 2 fixes in your input script is such that fix thermal/conductivity comes first. If you are
using fix ave/spatial to measure the temperature profile induced by fix viscosity, then this may cause a
glitch in the profile since you are averaging immediately after swaps have occurred. Flipping the order of
the 2 fixes typically helps.

Fix viscosity comes before fix ave/spatial
The order of these 2 fixes in your input script is such that fix viscosity comes first. If you are using fix
ave/spatial to measure the velocity profile induced by fix viscosity, then this may cause a glitch in the
profile since you are averaging immediately after swaps have occurred. Flipping the order of the 2 fixes
typically helps.

For better accuracy use 'pair_modify table 0'
The user-specified force accuracy cannot be achieved unless the table feature is disabled by using
"pair_modify table 0'.

Geometric mixing assumed for 1/r6 coefficients
Self-explanatory.

Group for fix_modify temp != fix group
The fix_modify command is specifying a temperature computation that computes a temperature on a
different group of atoms than the fix itself operates on. This is probably not what you want to do.

Improper atoms missing at step %ld
One or more of 4 atoms needed to compute a particular improper are missing on this processor. Typically
this is because the pairwise cutoff is set too short or the improper has blown apart and an atom is too far
away.

Improper problem: Yod %ld %d %d Yod Yod
Conformation of the 4 listed improper atoms is extreme; you may want to check your simulation
geometry.

Inconsistent image flags
The image flags for a pair on bonded atoms appear to be inconsistent. Inconsistent means that when the
coordinates of the two atoms are unwrapped using the image flags, the two atoms are far apart.
Specifically they are further apart than half a periodic box length. Or they are more than a box length
apart in a non-periodic dimension. This is usually due to the initial data file not having correct image flags
for the 2 atoms in a bond that straddles a periodic boundary. They should be different by 1 in that case.
This is a warning because inconsistent image flags will not cause problems for dynamics or most
LAMMPS simulations. However they can cause problems when such atoms are used with the fix rigid or
replicate commands.

KIM Model does not provide “energy'; Potential energy will be zero
Self-explanatory.

KIM Model does not provide “forces'; Forces will be zero
Self-explanatory.

KIM Model does not provide “particleEnergy'; energy per atom will be zero
Self-explanatory.

KIM Model does not provide “particleVirial'; virial per atom will be zero
Self-explanatory.

Kspace_modify slab param < 2.0 may cause unphysical behavior
The kspace_modify slab parameter should be larger to insure periodic grids padded with empty space do
not overlap.

Less insertions than requested
The fix pour command was unsuccessful at finding open space for as many particles as it tried to insert.

Library error in lammps_gather_atoms
This library function cannot be used if atom IDs are not defined or are not consecutively numbered.

Library error in lammps_scatter_atoms
This library function cannot be used if atom IDs are not defined or are not consecutively numbered, or if

211

no atom map is defined. See the atom_modify command for details about atom maps.
Lost atoms via change_box: original %ld current %ld
The command options you have used caused atoms to be lost.
Lost atoms via displace_atoms: original %ld current %ld
The command options you have used caused atoms to be lost.
Lost atoms: original %ld current %ld
Lost atoms are checked for each time thermo output is done. See the thermo_modify lost command for
options. Lost atoms usually indicate bad dynamics, e.g. atoms have been blown far out of the simulation
box, or moved futher than one processor's sub-domain away before reneighboring.
MSM mesh too small, increasing to 2 points in each direction
Self-explanatory.
Mismatch between velocity and compute groups
The temperature computation used by the velocity command will not be on the same group of atoms that
velocities are being set for.
Mixing forced for lj coefficients
Self-explanatory.
Molecule attributes do not match system attributes
An attribute is specified (e.g. diameter, charge) that is not defined for the specified atom style.
Molecule has bond topology but no special bond settings
This means the bonded atoms will not be excluded in pair-wise interactions.
Molecule template for create_atoms has multiple molecules
The create_atoms command will only create molecules of a single type, i.e. the first molecule in the
template.
Molecule template for fix deposit has multiple molecules
The fix deposit command will only create molecules of a single type, i.e. the first molecule in the
template.
Molecule template for fix pour has multiple molecules
The fix pour command will only create molecules of a single type, i.e. the first molecule in the template.
Molecule template for fix rigid/small has multiple molecules
The fix rigid/small command will only recoginze molecules of a single type, i.e. the first molecule in the
template.
Molecule template for fix shake has multiple molecules
The fix shake command will only recoginze molecules of a single type, i.e. the first molecule in the
template.
More than one compute centro/atom
It is not efficient to use compute centro/atom more than once.
More than one compute cluster/atom
It is not efficient to use compute cluster/atom more than once.
More than one compute cna/atom defined
It is not efficient to use compute cna/atom more than once.
More than one compute contact/atom
It is not efficient to use compute contact/atom more than once.
More than one compute coord/atom
It is not efficient to use compute coord/atom more than once.
More than one compute damage/atom
It is not efficient to use compute ke/atom more than once.
More than one compute erotate/sphere/atom
It is not efficient to use compute erorate/sphere/atom more than once.
More than one compute ke/atom
It is not efficient to use compute ke/atom more than once.
More than one compute voronoi/atom command
It is not efficient to use compute voronoi/atom more than once.

212

More than one fix poems
It is not efficient to use fix poems more than once.
More than one fix rigid
It is not efficient to use fix rigid more than once.
Neighbor exclusions used with KSpace solver may give inconsistent Coulombic energies
This is because excluding specific pair interactions also excludes them from long-range interactions
which may not be the desired effect. The special_bonds command handles this consistently by insuring
excluded (or weighted) 1-2, 1-3, 1-4 interactions are treated consistently by both the short-range pair style
and the long-range solver. This is not done for exclusions of charged atom pairs via the neigh_modify
exclude command.
New thermo_style command, previous thermo_modify settings will be lost
If a thermo_style command is used after a thermo_modify command, the settings changed by the
thermo_modify command will be reset to their default values. This is because the thermo_modify
commmand acts on the currently defined thermo style, and a thermo_style command creates a new style.
No Kspace calculation with verlet/split
The 2nd partition performs a kspace calculation so the kspace_style command must be used.
No fixes defined, atoms won't move
If you are not using a fix like nve, nvt, npt then atom velocities and coordinates will not be updated
during timestepping.
No joints between rigid bodies, use fix rigid instead
The bodies defined by fix poems are not connected by joints. POEMS will integrate the body motion, but
it would be more efficient to use fix rigid.
Not using real units with pair reax
This is most likely an error, unless you have created your own ReaxFF parameter file in a different set of
units.
Number of MSM mesh points changed to be a multiple of 2
MSM requires that the number of grid points in each direction be a multiple of two and the number of
grid points in one or more directions have been adjusted to meet this requirement.
OMP_NUM_THREADS environment is not set.
This environment variable must be set appropriately to use the USER-OMP pacakge.
One or more atoms are time integrated more than once
This is probably an error since you typically do not want to advance the positions or velocities of an atom
more than once per timestep.
One or more compute molecules has atoms not in group
The group used in a compute command that operates on moleclues does not include all the atoms in some
molecules. This is probably not what you want.
One or more respa levels compute no forces
This is computationally inefficient.
Pair COMB charge %.10f with force %.10f hit max barrier
Something is possibly wrong with your model.
Pair COMB charge %.10f with force %.10f hit min barrier
Something is possibly wrong with your model.
Pair brownian needs newton pair on for momentum conservation
Self-explanatory.
Fair dpd needs newton pair on for momentum conservation
Self-explanatory.
Pair dsmc: num_of_collisions > number_of_A
Collision model in DSMC is breaking down.
Pair dsmc: num_of_collisions > number_of B
Collision model in DSMC is breaking down.
Particle deposition was unsuccessful
The fix deposit command was not able to insert as many atoms as needed. The requested volume fraction

213

may be too high, or other atoms may be in the insertion region.

Reducing PPPM order b/c stencil extends beyond nearest neighbor processor
This may lead to a larger grid than desired. See the kspace_modify overlap command to prevent changing
of the PPPM order.

Reducing PPPM order b/c stencil extends beyond neighbor processor
This may lead to a larger grid than desired. See the kspace_modify overlap command to prevent changing
of the PPPM order.

Reducing PPPMDisp Coulomb order b/c stencil extends beyond neighbor processor
This may lead to a larger grid than desired. See the kspace_modify overlap command to prevent changing
of the PPPM order.

Reducing PPPMDisp dispersion order b/c stencil extends beyond neighbor processor
This may lead to a larger grid than desired. See the kspace_modify overlap command to prevent changing
of the PPPM order.

Replacing a fix, but new group != old group
The ID and style of a fix match for a fix you are changing with a fix command, but the new group you are
specifying does not match the old group.

Replicating in a non-periodic dimension
The parameters for a replicate command will cause a non-periodic dimension to be replicated; this may
cause unwanted behavior.

Resetting reneighboring criteria during PRD
A PRD simulation requires that neigh_modify settings be delay = 0, every = 1, check = yes. Since these
settings were not in place, LAMMPS changed them and will restore them to their original values after the
PRD simulation.

Resetting reneighboring criteria during TAD
A TAD simulation requires that neigh_modify settings be delay = 0, every = 1, check = yes. Since these
settings were not in place, LAMMPS changed them and will restore them to their original values after the
PRD simulation.

Resetting reneighboring criteria during minimization
Minimization requires that neigh_modify settings be delay = 0, every = 1, check = yes. Since these
settings were not in place, LAMMPS changed them and will restore them to their original values after the
minimization.

Restart file used different # of processors
The restart file was written out by a LAMMPS simulation running on a different number of processors.
Due to round-off, the trajectories of your restarted simulation may diverge a little more quickly than if
you ran on the same # of processors.

Restart file used different 3d processor grid
The restart file was written out by a LAMMPS simulation running on a different 3d grid of processors.
Due to round-off, the trajectories of your restarted simulation may diverge a little more quickly than if
you ran on the same # of processors.

Restart file used different boundary settings, using restart file values
Your input script cannot change these restart file settings.

Restart file used different newton bond setting, using restart file value
The restart file value will override the setting in the input script.

Restart file used different newton pair setting, using input script value
The input script value will override the setting in the restart file.

Restrain problem: %d %ld %d %d %d %d
Conformation of the 4 listed dihedral atoms is extreme; you may want to check your simulation geometry.

Running PRD with only one replica
This is allowed, but you will get no parallel speed-up.

SRD bin shifting turned on due to small lamda
This is done to try to preserve accuracy.

SRD bin size for fix srd differs from user request

214

Fix SRD had to adjust the bin size to fit the simulation box. See the cubic keyword if you want this
message to be an error vs warning.

SRD bins for fix srd are not cubic enough
The bin shape is not within tolerance of cubic. See the cubic keyword if you want this message to be an
error vs warning.

SRD particle %d started inside big particle %d on step %ld bounce %d
See the inside keyword if you want this message to be an error vs warning.

Shake determinant < 0.0
The determinant of the quadratic equation being solved for a single cluster specified by the fix shake
command is numerically suspect. LAMMPS will set it to 0.0 and continue.

Should not allow rigid bodies to bounce off relecting walls
LAMMPS allows this, but their dynamics are not computed correctly.

Should not use fix nve/limit with fix shake
This will lead to invalid constraint forces in the SHAKE computation.

Simulations might be very slow because of large number of structure factors
Self-explanatory.

Slab correction not needed for MSM
Slab correction is intended to be used with Ewald or PPPM and is not needed by MSM.

System is not charge neutral, net charge = %g
The total charge on all atoms on the system is not 0.0, which is not valid for the long-range Coulombic
solvers.

Table inner cutoff >= outer cutoff
You specified an inner cutoff for a Coulombic table that is longer than the global cutoff. Probably not
what you wanted.

Temperature for MSST is not for group all
User-assigned temperature to MSST fix does not compute temperature for all atoms. Since MSST
computes a global pressure, the kinetic energy contribution from the temperature is assumed to also be for
all atoms. Thus the pressure used by MSST could be inaccurate.

Temperature for NPT is not for group all
User-assigned temperature to NPT fix does not compute temperature for all atoms. Since NPT computes a
global pressure, the kinetic energy contribution from the temperature is assumed to also be for all atoms.
Thus the pressure used by NPT could be inaccurate.

Temperature for fix modify is not for group all
The temperature compute is being used with a pressure calculation which does operate on group all, so
this may be inconsistent.

Temperature for thermo pressure is not for group all
User-assigned temperature to thermo via the thermo_modify command does not compute temperature for
all atoms. Since thermo computes a global pressure, the kinetic energy contribution from the temperature
is assumed to also be for all atoms. Thus the pressure printed by thermo could be inaccurate.

The minimizer does not re-orient dipoles when using fix efield
This means that only the atom coordinates will be minimized, not the orientation of the dipoles.

Too many common neighbors in CNA %d times
More than the maximum # of neighbors was found multiple times. This was unexpected.

Too many inner timesteps in fix ttm
Self-explanatory.

Too many neighbors in CNA for %d atoms
More than the maximum # of neighbors was found multiple times. This was unexpected.

Triclinic box skew is large
The displacement in a skewed direction is normally required to be less than half the box length in that
dimension. E.g. the xy tilt must be between -half and +half of the x box length. You have relaxed the
constraint using the box tilt command, but the warning means that a LAMMPS simulation may be
inefficient as a result.

215

Use special bonds = 0,1,1 with bond style fene
Most FENE models need this setting for the special_bonds command.
Use special bonds = 0,1,1 with bond style fene/expand
Most FENE models need this setting for the special_bonds command.
Using a manybody potential with bonds/angles/dihedrals and special_bond exclusions
This is likely not what you want to do. The exclusion settings will eliminate neighbors in the neighbor
list, which the manybody potential needs to calculated its terms correctly.
Using compute temp/deform with inconsistent fix deform remap option
Fix nvt/sllod assumes deforming atoms have a velocity profile provided by "remap v" or "remap none" as
a fix deform option.
Using compute temp/deform with no fix deform defined
This is probably an error, since it makes little sense to use compute temp/deform in this case.
Using fix srd with box deformation but no SRD thermostat
The deformation will heat the SRD particles so this can be dangerous.
Using largest cut-off for lj/long/dipole/long long long
Self-explanatory.
Using largest cutoff for buck/long/coul/long
Self-exlanatory.
Using largest cutoff for lj/long/coul/long
Self-explanatory.
Using largest cutoff for pair_style lj/long/tip4p/long
Self-explanatory.
Using pair tail corrections with nonperiodic system
This is probably a bogus thing to do, since tail corrections are computed by integrating the density of a
periodic system out to infinity.

216

Previous Section - LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands - Next Section

13. Future and history

This section lists features we plan to add to LAMMPS, features of previous versions of LAMMPS, and features of
other parallel molecular dynamics codes our group has distributed.

13.1 Coming attractions
13.2 Past versions

13.1 Coming attractions
The Wish list link on the LAMMPS WWW page gives a list of features we are hoping to add to LAMMPS in the
future, including contact names of individuals you can email if you are interested in contributing to the

developement or would be a future user of that feature.

You can also send email to the developers if you want to add your wish to the list.

13.2 Past versions

LAMMPS development began in the mid 1990s under a cooperative research & development agreement
(CRADA) between two DOE labs (Sandia and LLNL) and 3 companies (Cray, Bristol Myers Squibb, and
Dupont). The goal was to develop a large-scale parallel classical MD code; the coding effort was led by Steve
Plimpton at Sandia.

After the CRADA ended, a final F77 version, LAMMPS 99, was released. As development of LAMMPS
continued at Sandia, its memory management was converted to F90; a final FO0 version was released as
LAMMPS 2001.

The current LAMMPS is a rewrite in C++ and was first publicly released as an open source code in 2004. It
includes many new features beyond those in LAMMPS 99 or 2001. It also includes features from older parallel
MD codes written at Sandia, namely ParaDyn, Warp, and GranFlow (see below).

In late 2006 we began merging new capabilities into LAMMPS that were developed by Aidan Thompson at
Sandia for his MD code GRASP, which has a parallel framework similar to LAMMPS. Most notably, these have
included many-body potentials - Stillinger-Weber, Tersoff, ReaxFF - and the associated charge-equilibration
routines needed for ReaxFF.

The History link on the LAMMPS WWW page gives a timeline of features added to the C++ open-source version
of LAMMPS over the last several years.

These older codes are available for download from the LAMMPS WWW site, except for Warp & GranFlow
which were primarily used internally. A brief listing of their features is given here.

LAMMPS 2001
¢ F90 + MPI
¢ dynamic memory

e spatial-decomposition parallelism
e NVE, NVT, NPT, NPH, rRESPA integrators

217

http://lammps.sandia.gov
http://lammps.sandia.gov/future.html
http://lammps.sandia.gov/authors.html
http://lammps.sandia.gov/history.html
http://lammps.sandia.gov

¢ L.J and Coulombic pairwise force fields

¢ all-atom, united-atom, bead-spring polymer force fields
¢ CHARMM-compatible force fields

o class 2 force fields

¢ 3d/2d Ewald & PPPM

¢ various force and temperature constraints

e SHAKE

¢ Hessian-free truncated-Newton minimizer

¢ user-defined diagnostics

LAMMPS 99

e F77 + MPI

¢ static memory allocation

¢ spatial-decomposition parallelism

¢ most of the LAMMPS 2001 features with a few exceptions
¢ no 2d Ewald & PPPM

¢ molecular force fields are missing a few CHARMM terms
¢ no SHAKE

¢ F90 + MPI

¢ spatial-decomposition parallelism

¢ embedded atom method (EAM) metal potentials + LJ

¢ lattice and grain-boundary atom creation

¢ NVE, NVT integrators

¢ boundary conditions for applying shear stresses

¢ temperature controls for actively sheared systems

e per-atom energy and centro-symmetry computation and output

ParaDyn

e F77 + MPI

¢ atom- and force-decomposition parallelism

¢ embedded atom method (EAM) metal potentials

e Jattice atom creation

¢ NVE, NVT, NPT integrators

e all serial DYNAMO features for controls and constraints

GranFlow

¢ F90 + MPI

¢ spatial-decomposition parallelism

¢ frictional granular potentials

¢ NVE integrator

¢ boundary conditions for granular flow and packing and walls
¢ particle insertion

218

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style charmm command

angle_style charmm/omp command
Syntax:

angle_style charmm

Examples:

angle_style charmm
angle_coeff 1 300.0 107.0 50.0 3.0

Description:

The charmm angle style uses the potential
-~ 2 - - e 2
FEF=K (9—00) —|—1&UB(‘I = ’L-"B)

with an additional Urey_Bradley term based on the distance r between the 1st and 3rd atoms in the angle. K,
thetaO, Kub, and Rub are coefficients defined for each angle type.

See (MacKerell) for a description of the CHARMM force field.

The following coefficients must be defined for each angle type via the angle_coeff command as in the example
above, or in the data file or restart files read by the read_data or read_restart commands:

¢ K (energy/radian’2)

¢ thetaO (degrees)

¢ K_ub (energy/distance”2)
¢ r_ub (distance)

Theta0 is specified in degrees, but LAMMPS converts it to radians internally; hence the units of K are in
energy/radian”2.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the suffix.
They have been optimized to run faster, depending on your available hardware, as discussed in Section_accelerate
of the manual. The accelerated styles take the same arguments and should produce the same results, except for
round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively. They
are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the

-suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your input
script.

219

http://lammps.sandia.gov

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This angle style can only be used if LAMMPS was built with the MOLECULAR package (which it is by default).
See the Making LAMMPS section for more info on packages.

Related commands:
angle_coeff

Default: none

(MacKerell) MacKerell, Bashford, Bellott, Dunbrack, Evanseck, Field, Fischer, Gao, Guo, Ha, et al, J Phys
Chem, 102, 3586 (1998).

220

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style class2 command

angle_style class2/omp command
Syntax:

angle_style class2

Examples:

angle_style class?2

angle_coeff * 75.0

angle_coeff 1 bb 10.5872 1.0119 1.5228
angle_coeff * ba 3.6551 24.895 1.0119 1.5228

Description:

The class2 angle style uses the potential

E = E,+ Ep+ Epg

E, = Ky —00)%+ K3(0—00)° + K40 — 6p)*
E{;.b = JI(I” — T"l)(?"jk o ?'g)
Epy = Nl(?"z'j —11)(0 — 6g) + Ny ("".jh‘ —12)(0 — 6p)

where Ea is the angle term, Ebb is a bond-bond term, and Eba is a bond-angle term. Theta0 is the equilibrium
angle and r1 and r2 are the equilibrium bond lengths.

See (Sun) for a description of the COMPASS class2 force field.

Coefficients for the Ea, Ebb, and Eba formulas must be defined for each angle type via the angle_coeff command
as in the example above, or in the data file or restart files read by the read_data or read_restart commands.

These are the 4 coefficients for the Ea formula:

¢ thetaO (degrees)

¢ K2 (energy/radian”2)
¢ K3 (energy/radian”3)
¢ K4 (energy/radian™4)

ThetaO is specified in degrees, but LAMMPS converts it to radians internally; hence the units of the various K are
in per-radian.

For the Ebb formula, each line in a angle_coeff command in the input script lists 4 coefficients, the first of which
is "bb" to indicate they are BondBond coefficients. In a data file, these coefficients should be listed under a
"BondBond Coeffs" heading and you must leave out the "bb", i.e. only list 3 coefficients after the angle type.

221

http://lammps.sandia.gov

* bb

® M (energy/distance”2)
¢ r1 (distance)

¢ 2 (distance)

For the Eba formula, each line in a angle_coeff command in the input script lists 5 coefficients, the first of which
is "ba" to indicate they are BondAngle coefficients. In a data file, these coefficients should be listed under a
"BondAngle Coeffs" heading and you must leave out the "ba", i.e. only list 4 coefficients after the angle type.

® ba

® N1 (energy/distance”2)
® N2 (energy/distance”2)
¢ r1 (distance)

e 2 (distance)

The thetaO value in the Eba formula is not specified, since it is the same value from the Ea formula.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the suffix.
They have been optimized to run faster, depending on your available hardware, as discussed in Section_accelerate
of the manual. The accelerated styles take the same arguments and should produce the same results, except for
round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively. They
are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the
-suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your input

script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This angle style can only be used if LAMMPS was built with the CLASS2 package. See the Making LAMMPS
section for more info on packages.

Related commands:
angle_coeff

Default: none

(Sun) Sun, J Phys Chem B 102, 7338-7364 (1998).

222

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_coeff command

Syntax:
angle_coeff N args

¢ N = angle type (see asterisk form below)
e args = coefficients for one or more angle types

Examples:

angle_coeff 1 300.0 107.0
angle_coeff * 5.0
angle_coeff 2*10 5.0

Description:

Specify the angle force field coefficients for one or more angle types. The number and meaning of the coefficients
depends on the angle style. Angle coefficients can also be set in the data file read by the read_data command or in
a restart file.

N can be specified in one of two ways. An explicit numeric value can be used, as in the 1st example above. Or a
wild-card asterisk can be used to set the coefficients for multiple angle types. This takes the form "*" or "*n" or
"n*" or "m*n". If N = the number of angle types, then an asterisk with no numeric values means all types from 1
to N. A leading asterisk means all types from 1 to n (inclusive). A trailing asterisk means all types from n to N
(inclusive). A middle asterisk means all types from m to n (inclusive).

Note that using an angle_coeff command can override a previous setting for the same angle type. For example,
these commands set the coeffs for all angle types, then overwrite the coeffs for just angle type 2:

angle_coeff * 200.0 107.0 1.2
angle_coeff 2 50.0 107.0

A line in a data file that specifies angle coefficients uses the exact same format as the arguments of the
angle_coeff command in an input script, except that wild-card asterisks should not be used since coefficients for
all N types must be listed in the file. For example, under the "Angle Coeffs" section of a data file, the line that
corresponds to the 1st example above would be listed as

1 300.0 107.0

The angle_style class2 is an exception to this rule, in that an additional argument is used in the input script to
allow specification of the cross-term coefficients. See its doc page for details.

Here is an alphabetic list of angle styles defined in LAMMPS. Click on the style to display the formula it
computes and coefficients specified by the associated angle_coeff command.

Note that there are also additional angle styles submitted by users which are included in the LAMMPS
distribution. The list of these with links to the individual styles are given in the angle section of this page.

¢ angle_style none - turn off angle interactions
e angle_style hybrid - define multiple styles of angle interactions

223

http://lammps.sandia.gov

¢ angle_style charmm - CHARMM angle

¢ angle_style class2 - COMPASS (class 2) angle

¢ angle_style cosine - cosine angle potential

¢ angle_style cosine/delta - difference of cosines angle potential
¢ angle_style cosine/periodic - DREIDING angle

¢ angle_style cosine/squared - cosine squared angle potential

¢ angle_style harmonic - harmonic angle

¢ angle_style table - tabulated by angle

Restrictions:

This command must come after the simulation box is defined by a read_data, read_restart, or create_box
command.

An angle style must be defined before any angle coefficients are set, either in the input script or in a data file.
Related commands:
angle_style

Default: none

224

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style cosine command

angle_style cosine/omp command
Syntax:

angle_style cosine

Examples:

angle_style cosine
angle_coeff * 75.0

Description:

The cosine angle style uses the potential
E = K|[1 + cos(6)]

where K is defined for each angle type.

The following coefficients must be defined for each angle type via the angle_coeff command as in the example
above, or in the data file or restart files read by the read_data or read_restart commands:

¢ K (energy)

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the suffix.
They have been optimized to run faster, depending on your available hardware, as discussed in Section_accelerate
of the manual. The accelerated styles take the same arguments and should produce the same results, except for
round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively. They
are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the
-suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your input

script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This angle style can only be used if LAMMPS was built with the MOLECULAR package (which it is by default).
See the Making LAMMPS section for more info on packages.

Related commands:

225

http://lammps.sandia.gov

angle_coeff

Default: none

226

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style cosine/delta command

angle_style cosine/delta/omp command
Syntax:

angle_style cosine/delta

Examples:

angle_style cosine/delta
angle_coeff 2*4 75.0 100.0

Description:

The cosine/delta angle style uses the potential
E = K[1 — cos(0 — 6,)]
where theta0 is the equilibrium value of the angle, and K is a prefactor. Note that the usual 1/2 factor is included

in K.

The following coefficients must be defined for each angle type via the angle_coeff command as in the example
above, or in the data file or restart files read by the read_data or read_restart commands:

¢ K (energy)
¢ thetaO (degrees)

Theta0 is specified in degrees, but LAMMPS converts it to radians internally.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the suffix.
They have been optimized to run faster, depending on your available hardware, as discussed in Section_accelerate
of the manual. The accelerated styles take the same arguments and should produce the same results, except for
round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively. They
are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the
-suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your input

script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This angle style can only be used if LAMMPS was built with the MOLECULAR package (which it is by default).
See the Making LAMMPS section for more info on packages.

227

http://lammps.sandia.gov

Related commands:
angle_coeff, angle_style cosine/squared

Default: none

228

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style cosine/periodic command

angle_style cosine/periodic/omp command
Syntax:

angle_style cosine/periodic

Examples:

angle_style cosine/periodic
angle_coeff * 75.0 1 6

Description:
The cosine/periodic angle style uses the following potential, which is commonly used in the DREIDING force

field, particularly for organometallic systems where n = 4 might be used for an octahedral complex and n = 3
might be used for a trigonal center:

E=C|[l1- B(—=1)"cos (nf)]

where C, B and n are coefficients defined for each angle type.
See (Mayo) for a description of the DREIDING force field

The following coefficients must be defined for each angle type via the angle_coeff command as in the example
above, or in the data file or restart files read by the read_data or read_restart commands:

¢ C (energy)
eB=1or-1
en=1,2,3,4,5 or 6 for periodicity

Note that the prefactor C is specified and not the overall force constant K=C /n*2. When B =1, it leads to a
minimum for the linear geometry. When B = -1, it leads to a maximum for the linear geometry.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the suffix.
They have been optimized to run faster, depending on your available hardware, as discussed in Section_accelerate
of the manual. The accelerated styles take the same arguments and should produce the same results, except for
round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively. They
are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the
-suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your input
script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

229

http://lammps.sandia.gov

Restrictions:

This angle style can only be used if LAMMPS was built with the MOLECULAR package (which it is by default).
See the Making LAMMPS section for more info on packages.

Related commands:
angle_coeff

Default: none

(Mayo) Mayo, Olfason, Goddard III, J Phys Chem, 94, 8897-8909 (1990).

230

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style cosine/shift command

angle_style cosine/shift/omp command
Syntax:

angle_style cosine/shift

Examples:

angle_style cosine/shift
angle_coeff * 10.0 45.0

Description:

The cosine/shift angle style uses the potential

e _# [1+ Cos(0 — 6p)]

where theta0 is the equilibrium angle. The potential is bounded between -Umin and zero. In the neighborhood of
the minimum E=- Umin + Umin/4(theta-theta0)"2 hence the spring constant is umin/2.

The following coefficients must be defined for each angle type via the angle_coeff command as in the example
above, or in the data file or restart files read by the read_data or read_restart commands:

¢ umin (energy)
¢ theta (angle)

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the suffix.
They have been optimized to run faster, depending on your available hardware, as discussed in Section_accelerate
of the manual. The accelerated styles take the same arguments and should produce the same results, except for
round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively. They
are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the
-suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your input

script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

231

http://lammps.sandia.gov

This angle style can only be used if LAMMPS was built with the USER-MISC package. See the Making
LAMMPS section for more info on packages.

Related commands:
angle_coeff, angle_cosineshiftexp

Default: none

232

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style cosine/shift/exp command

angle_style cosine/shift/exp/omp command
Syntax:
angle_style cosine/shift/exp

Examples:

angle_style cosine/shift/exp
angle_coeff * 10.0 45.0 2.0

Description:

The cosine/shift/exp angle style uses the potential

e —al(0,00) _ 1

E=—U_y., ; with U(6,6y) = —0.5 (1 + cos(0 — b))
pie—

where Umin, theta, and a are defined for each angle type.

The potential is bounded between [-Umin:0] and the minimum is located at the angle theta0. The a parameter can
be both positive or negative and is used to control the spring constant at the equilibrium.

The spring constant is given by k = A exp(A) Umin / [2 (Exp(a)-1)]. For a > 3, k/Umin = a/2 to better than 5%
relative error. For negative values of the a parameter, the spring constant is essentially zero, and anharmonic
terms takes over. The potential is furthermore well behaved in the limit a -> 0, where it has been implemented to
linear order in a for a < 0.001. In this limit the potential reduces to the cosineshifted potential.

The following coefficients must be defined for each angle type via the angle_coeff command as in the example
above, or in the data file or restart files read by the read_data or read_restart commands:

¢ umin (energy)
¢ theta (angle)
¢ A (real number)

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the suffix.
They have been optimized to run faster, depending on your available hardware, as discussed in Section_accelerate
of the manual. The accelerated styles take the same arguments and should produce the same results, except for
round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively. They
are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the

233

http://lammps.sandia.gov

-suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your input
script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This angle style can only be used if LAMMPS was built with the USER-MISC package. See the Making
LAMMPS section for more info on packages.

Related commands:
angle_coeff, angle_cosineshift, dihedral_cosineshift

Default: none

234

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style cosine/squared command

angle_style cosine/squared/omp command
Syntax:

angle_style cosine/squared

Examples:

angle_style cosine/squared
angle_coeff 2*4 75.0 100.0

Description:

The cosine/squared angle style uses the potential
- 2
E = K|cos(6) — cos(6)]

where theta0 is the equilibrium value of the angle, and K is a prefactor. Note that the usual 1/2 factor is included
in K.

The following coefficients must be defined for each angle type via the angle_coeff command as in the example
above, or in the data file or restart files read by the read_data or read_restart commands:

¢ K (energy)
¢ thetaO (degrees)

ThetaO is specified in degrees, but LAMMPS converts it to radians internally.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the suffix.
They have been optimized to run faster, depending on your available hardware, as discussed in Section_accelerate
of the manual. The accelerated styles take the same arguments and should produce the same results, except for
round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively. They
are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the
-suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your input

script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

235

http://lammps.sandia.gov

This angle style can only be used if LAMMPS was built with the MOLECULAR package (which it is by default).
See the Making LAMMPS section for more info on packages.

Related commands:
angle_coeff

Default: none

236

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style dipole command

angle_style dipole/omp command
Syntax:

angle_style dipole

Examples:

angle_style dipole
angle_coeff 6 2.1 180.0

Description:

The dipole angle style is used to control the orientation of a dipolar atom within a molecule (Orsi). Specifically,
the dipole angle style restrains the orientation of a point dipole mu_j (embedded in atom 'j') with respect to a
reference (bond) vector r_ij =r_i - r_j, where '1' is another atom of the same molecule (typically, 'i' and 'j' are also

covalently bonded).

It is convenient to define an angle gamma between the 'free' vector mu_j and the reference (bond) vector r_ij:

_ Ei® Ty

15 Tij

(_‘(_) S A,r'l

The dipole angle style uses the potential:

E = K(cosvy — cos~p)?

— ATD " (™ " 0

where K is a rigidity constant and gamma0 is an equilibrium (reference) angle.

The torque on the dipole can be obtained by differentiating the potential using the 'chain rule' as in appendix C.3
of (Allen):

2K (cosvy — cos)

5 Tig

T; =

iz X [

Example: if gammad is set to O degrees, the torque generated by the potential will tend to align the dipole along
the reference direction defined by the (bond) vector r_ij (in other words, mu_j is restrained to point towards atom

).

237

http://lammps.sandia.gov

Note that the angle dipole potential does not give rise to any force, because it does not depend on the distance
between i and j (it only depends on the angle between mu_j and r_ij).

The following coefficients must be defined for each angle type via the angle_coeff command as in the example
above, or in the data file or restart files read by the read_data or read_restart commands:

¢ K (energy)
¢ gamma((degrees)

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the suffix.
They have been optimized to run faster, depending on your available hardware, as discussed in Section_accelerate
of the manual. The accelerated styles take the same arguments and should produce the same results, except for
round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively. They
are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the
-suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your input
script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This angle style can only be used if LAMMPS was built with the USER-MISC package. See the Making
LAMMPS section for more info on packages.

IMPORTANT NOTE: In the "Angles" section of the data file, the atom ID 'j' corresponding to the dipole to
restrain must come before the atom ID of the reference atom 'i'. A third atom ID k' must also be provided,
although 'k' is just a 'dummy"' atom which can be any atom; it may be useful to choose a convention (e.g., 'k'="1")
and adhere to it. For example, if ID=1 for the dipolar atom to restrain, and ID=2 for the reference atom, the
corresponding line in the "Angles" section of the data file would read: X X 1 2 2

The "newton" command for intramolecular interactions must be "on" (which is the default).

This angle style should not be used with SHAKE.

Related commands:

angle_coeff, angle_hybrid

Default: none

(Orsi) Orsi & Essex, The ELBA force field for coarse-grain modeling of lipid membranes, PloS ONE 6(12):
e28637, 2011.

(Allen) Allen & Tildesley, Computer Simulation of Liquids, Clarendon Press, Oxford, 1987.

238

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style fourier command

angle_style fourier/omp command
Syntax:

angle_style fourier

Examples:

angle_style fourier angle_coeff 75.0 1.0 1.0 1.0
Description:

The fourier angle style uses the potential
E = K[Cy + C] cos(0) + C; cos(20)]

The following coefficients must be defined for each angle type via the angle_coeff command as in the example
above, or in the data file or restart files read by the read_data or read_restart commands:

¢ K (energy)
¢ CO (real)
e C1 (real)
e C2 (real)

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the suffix.
They have been optimized to run faster, depending on your available hardware, as discussed in Section_accelerate
of the manual. The accelerated styles take the same arguments and should produce the same results, except for
round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively. They
are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the
-suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your input

script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This angle style can only be used if LAMMPS was built with the USER_MISC package. See the Making
LAMMPS section for more info on packages.

Related commands:

239

http://lammps.sandia.gov

angle_coeff

Default: none

240

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style fourier/simple command

angle_style fourier/simple/omp command
Syntax:

angle_style fourier/simple

Examples:

angle_style fourier/simple angle_coeff 100.0 -1.0 1.0
Description:

The fourier/simple angle style uses the potential
E = KJ[1.0 + ccos(nf)]

The following coefficients must be defined for each angle type via the angle_coeff command as in the example
above, or in the data file or restart files read by the read_data or read_restart commands:

¢ K (energy)
® ¢ (real)
® n (real)

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the suffix.
They have been optimized to run faster, depending on your available hardware, as discussed in Section_accelerate
of the manual. The accelerated styles take the same arguments and should produce the same results, except for
round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively. They
are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the
-suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your input

script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This angle style can only be used if LAMMPS was built with the USER_MISC package. See the Making
LAMMPS section for more info on packages.

Related commands:

angle_coeff

241

http://lammps.sandia.gov

Default: none

242

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style harmonic command

angle_style harmonic/omp command
Syntax:

angle_style harmonic

Examples:

angle_style harmonic
angle_coeff 1 300.0 107.0

Description:

The harmonic angle style uses the potential
2
E=K(@0-6)
where theta0 is the equilibrium value of the angle, and K is a prefactor. Note that the usual 1/2 factor is included

in K.

The following coefficients must be defined for each angle type via the angle_coeff command as in the example
above, or in the data file or restart files read by the read_data or read_restart commands:

¢ K (energy/radian”2)
¢ thetaO (degrees)

Theta0 is specified in degrees, but LAMMPS converts it to radians internally; hence the units of K are in
energy/radian”2.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the suffix.
They have been optimized to run faster, depending on your available hardware, as discussed in Section_accelerate
of the manual. The accelerated styles take the same arguments and should produce the same results, except for
round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively. They
are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the
-suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your input

script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions: none

243

http://lammps.sandia.gov

This angle style can only be used if LAMMPS was built with the MOLECULAR package (which it is by default).
See the Making LAMMPS section for more info on packages.

Related commands:
angle_coeff

Default: none

244

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style hybrid command

Syntax:
angle_style hybrid stylel style2 ...
e stylel,style2 = list of one or more angle styles

Examples:

angle_style hybrid harmonic cosine
angle_coeff 1 harmonic 80.0 30.0
angle_coeff 2* cosine 50.0

Description:

The hybrid style enables the use of multiple angle styles in one simulation. An angle style is assigned to each
angle type. For example, angles in a polymer flow (of angle type 1) could be computed with a harmonic potential
and angles in the wall boundary (of angle type 2) could be computed with a cosine potential. The assignment of
angle type to style is made via the angle_coeff command or in the data file.

In the angle_coeff commands, the name of an angle style must be added after the angle type, with the remaining
coefficients being those appropriate to that style. In the example above, the 2 angle_coeff commands set angles of
angle type 1 to be computed with a harmonic potential with coefficients 80.0, 30.0 for K, theta0. All other angle
types (2-N) are computed with a cosine potential with coefficient 50.0 for K.

If angle coefficients are specified in the data file read via the read_data command, then the same rule applies. E.g.
"harmonic" or "cosine", must be added after the angle type, for each line in the "Angle Coeffs" section, e.g.

Angle Coeffs
1 harmonic 80.0 30.0

2 cosine 50.0

If class2 is one of the angle hybrid styles, the same rule holds for specifying additional BondBond (and
BondAngle) coefficients either via the input script or in the data file. L.e. class2 must be added to each line after
the angle type. For lines in the BondBond (or BondAngle) section of the data file for angle types that are not
class2, you must use an angle style of skip as a placeholder, e.g.

BondBond Coeffs
1 skip

2 class2 3.6512 1.0119 1.0119

Note that it is not necessary to use the angle style skip in the input script, since BondBond (or BondAngle)
coefficients need not be specified at all for angle types that are not class?2.

An angle style of none with no additional coefficients can be used in place of an angle style, either in a input
script angle_coeff command or in the data file, if you desire to turn off interactions for specific angle types.

245

http://lammps.sandia.gov

Restrictions:

This angle style can only be used if LAMMPS was built with the MOLECULAR package (which it is by default).
See the Making LAMMPS section for more info on packages.

Unlike other angle styles, the hybrid angle style does not store angle coefficient info for individual sub-styles in a
binary restart files. Thus when retarting a simulation from a restart file, you need to re-specify angle_coeff
commands.

Related commands:

angle_coeff

Default: none

246

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style none command

Syntax:

angle_style none

Examples:

angle_style none
Description:

Using an angle style of none means angle forces are not computed, even if triplets of angle atoms were listed in
the data file read by the read_data command.

Restrictions: none
Related commands: none

Default: none

247

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style quartic command

angle_style quartic’/omp command

Syntax:
angle_style quartic
Examples:

angle_style quartic
angle_coeff 1 129.1948 56.8726 -25.9442 -14.2221

Description:

The qguartic angle style uses the potential

¥

E = Ky(0—0) + K30 — 0,)% + K4(0 — 6,)"

where theta0 is the equilibrium value of the angle, and K is a prefactor. Note that the usual 1/2 factor is included
in K.

The following coefficients must be defined for each angle type via the angle_coeff command as in the example
above, or in the data file or restart files read by the read_data or read_restart commands:

e thetaO (degrees)

¢ K2 (energy/radian”2)
¢ K3 (energy/radian”3)
¢ K4 (energy/radian”4)

Theta0 is specified in degrees, but LAMMPS converts it to radians internally; hence the units of K are in
energy/radian”2.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the suffix.
They have been optimized to run faster, depending on your available hardware, as discussed in Section_accelerate
of the manual. The accelerated styles take the same arguments and should produce the same results, except for
round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively. They
are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the
-suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your input

script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

248

http://lammps.sandia.gov

Restrictions:

This angle style can only be used if LAMMPS was built with the USER_MISC package. See the Making
LAMMPS section for more info on packages.

Related commands:
angle_coeff

Default: none

249

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style sdk command

Syntax:
angle_style sdk

angle_style sdk/omp
Examples:

angle_style sdk
angle_coeff 1 300.0 107.0

Description:

The sdk angle style is a combination of the harmonic angle potential,
2
E=K(®6 -6

where theta(is the equilibrium value of the angle and K a prefactor, with the repulsive part of the non-bonded
lji/sdk pair style between the atoms 1 and 3. This angle potential is intended for coarse grained MD simulations
with the CMM parametrization using the pair_style 1j/sdk. Relative to the pair_style [j/sdk, however, the energy is
shifted by epsilon, to avoid sudden jumps. Note that the usual 1/2 factor is included in K.

The following coefficients must be defined for each angle type via the angle_coeff command as in the example
above:

¢ K (energy/radian”2)
¢ thetaO (degrees)

Theta0 is specified in degrees, but LAMMPS converts it to radians internally; hence the units of K are in
energy/radian”2. The also required /j/sdk parameters will be extracted automatically from the pair_style.

Restrictions:

This angle style can only be used if LAMMPS was built with the USER-CG-CMM package. See the Making
LAMMPS section for more info on packages.

Related commands:
angle_coeff, angle_style harmonic, pair_style 1j/sdk, pair_style lj/sdk/coul/long

Default: none

250

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style command
Syntax:
angle_style style
e style = none or hybrid or charmm or class2 or cosine or cosine/squared or harmonic
Examples:

angle_style harmonic
angle_style charmm
angle_style hybrid harmonic cosine

Description:

Set the formula(s) LAMMPS uses to compute angle interactions between triplets of atoms, which remain in force
for the duration of the simulation. The list of angle triplets is read in by a read_data or read_restart command from
a data or restart file.

Hybrid models where angles are computed using different angle potentials can be setup using the hybrid angle
style.

The coefficients associated with a angle style can be specified in a data or restart file or via the angle_coeff
command.

All angle potentials store their coefficient data in binary restart files which means angle_style and angle_coeff
commands do not need to be re-specified in an input script that restarts a simulation. See the read_restart
command for details on how to do this. The one exception is that angle_style hybrid only stores the list of
sub-styles in the restart file; angle coefficients need to be re-specified.

IMPORTANT NOTE: When both an angle and pair style is defined, the special_bonds command often needs to
be used to turn off (or weight) the pairwise interaction that would otherwise exist between 3 bonded atoms.

In the formulas listed for each angle style, theta is the angle between the 3 atoms in the angle.

Here is an alphabetic list of angle styles defined in LAMMPS. Click on the style to display the formula it
computes and coefficients specified by the associated angle_coeff command.

Note that there are also additional angle styles submitted by users which are included in the LAMMPS
distribution. The list of these with links to the individual styles are given in the angle section of this page.

¢ angle_style none - turn off angle interactions
¢ angle_style hybrid - define multiple styles of angle interactions

¢ angle_style charmm - CHARMM angle

¢ angle_style class2 - COMPASS (class 2) angle

¢ angle_style cosine - cosine angle potential

¢ angle_style cosine/delta - difference of cosines angle potential
e angle_style cosine/periodic - DREIDING angle

¢ angle_style cosine/squared - cosine squared angle potential

251

http://lammps.sandia.gov

¢ angle_style harmonic - harmonic angle
¢ angle_style table - tabulated by angle

Restrictions:

Angle styles can only be set for atom_styles that allow angles to be defined.

Most angle styles are part of the MOLECULAR package. They are only enabled if LAMMPS was built with that
package. See the Making LAMMPS section for more info on packages. The doc pages for individual bond
potentials tell if it is part of a package.

Related commands:

angle_coeff

Default:

angle_style none

252

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

angle_style table command

angle_style table/omp command

Syntax:
angle_style table style N

e style = linear or spline = method of interpolation
e N =use N values in table

Examples:

angle_style table linear 1000
angle_coeff 3 file.table ENTRYL

Description:

Style table creates interpolation tables of length N from angle potential and derivative values listed in a file(s) as a
function of angle The files are read by the angle_coeff command.

The interpolation tables are created by fitting cubic splines to the file values and interpolating energy and
derivative values at each of N angles. During a simulation, these tables are used to interpolate energy and force
values on individual atoms as needed. The interpolation is done in one of 2 styles: linear or spline.

For the linear style, the angle is used to find 2 surrounding table values from which an energy or its derivative is
computed by linear interpolation.

For the spline style, a cubic spline coefficients are computed and stored at each of the N values in the table. The
angle is used to find the appropriate set of coefficients which are used to evaluate a cubic polynomial which
computes the energy or derivative.

The following coefficients must be defined for each angle type via the angle_coeff command as in the example
above.

¢ filename
® keyword

The filename specifies a file containing tabulated energy and derivative values. The keyword specifies a section
of the file. The format of this file is described below.

The format of a tabulated file is as follows (without the parenthesized comments):
Angle potential for harmonic (one or more comment or blank lines)

HAM
N 181 FP 0 0 EQ 90.0

(keyword is the first text on line)
(N, FP, EQ parameters)

(blank line)
(
(

=
=
©
i

FP 0 O N, FP parameters)

index, angle, energy, derivative)

N -
= O
o O
=N
o O
0 O
o Ul

253

http://lammps.sandia.gov

181 180.0 0.0 0.0

A section begins with a non-blank line whose 1st character is not a "#"; blank lines or lines starting with "#" can
be used as comments between sections. The first line begins with a keyword which identifies the section. The line
can contain additional text, but the initial text must match the argument specified in the angle_coeff command.
The next line lists (in any order) one or more parameters for the table. Each parameter is a keyword followed by
one or more numeric values.

The parameter "N" is required and its value is the number of table entries that follow. Note that this may be
different than the N specified in the angle_style table command. Let Ntable = N in the angle_style command, and
Nfile = "N" in the tabulated file. What LAMMPS does is a preliminary interpolation by creating splines using the
Nfile tabulated values as nodal points. It uses these to interpolate as needed to generate energy and derivative
values at Ntable different points. The resulting tables of length Ntable are then used as described above, when
computing energy and force for individual angles and their atoms. This means that if you want the interpolation
tables of length Ntable to match exactly what is in the tabulated file (with effectively no preliminary
interpolation), you should set Ntable = Nfile.

The "FP" parameter is optional. If used, it is followed by two values fplo and fphi, which are the 2nd derivatives
at the innermost and outermost angle settings. These values are needed by the spline construction routines. If not
specified by the "FP" parameter, they are estimated (less accurately) by the first two and last two derivative values
in the table.

The "EQ" parameter is also optional. If used, it is followed by a the equilibrium angle value, which is used, for
example, by the fix shake command. If not used, the equilibrium angle is set to 180.0.

Following a blank line, the next N lines list the tabulated values. On each line, the 1st value is the index from 1 to
N, the 2nd value is the angle value (in degrees), the 3rd value is the energy (in energy units), and the 4th is
-dE/d(theta) (also in energy units). The 3rd term is the energy of the 3-atom configuration for the specified angle.
The last term is the derivative of the energy with respect to the angle (in degrees, not radians). Thus the units of
the last term are still energy, not force. The angle values must increase from one line to the next. The angle values
must also begin with 0.0 and end with 180.0, i.e. span the full range of possible angles.

Note that one file can contain many sections, each with a tabulated potential. LAMMPS reads the file section by
section until it finds one that matches the specified keyword.

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the suffix.
They have been optimized to run faster, depending on your available hardware, as discussed in Section_accelerate
of the manual. The accelerated styles take the same arguments and should produce the same results, except for
round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively. They
are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the
-suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your input

script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

254

This angle style can only be used if LAMMPS was built with the MOLECULAR package (which it is by default).
See the Making LAMMPS section for more info on packages.

Related commands:
angle_coeff

Default: none

255

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

atom_modify command
Syntax:
atom_modify keyword values ...

¢ one or more keyword/value pairs may be appended
¢ keyword = id or map or first or sort

id value = yes or no
map value = array or hash
first value = group-ID = group whose atoms will appear first in internal atom lists
sort values = Nfreq binsize
Nfreg = sort atoms spatially every this many time steps
binsize = bin size for spatial sorting (distance units)
Examples:

atom_modify map hash
atom_modify map array sort 10000 2.0
atom_modify first colloid

Description:

Modify certain attributes of atoms defined and stored within LAMMPS, in addition to what is specified by the
atom_style command. The id and map keywords must be specified before a simulation box is defined; other
keywords can be specified any time.

The id keyword determines whether non-zero atom IDs can be assigned to each atom. If the value is yes, which is
the default, IDs are assigned, whether you use the create atoms or read_data or read_restart commands to initialize
atoms. If atom IDs are used, they must all be positive integers. They should also be unique, though LAMMPS
does not check for this. Typically they should also be consecutively numbered (from 1 to Natoms), though this is
not required. Molecular atom styles are those that store bond topology information (styles bond, angle, molecular,
full). These styles require atom IDs since the IDs are used to encode the topology. Some other LAMMPS
commands also require the use of atom IDs. E.g. some many-body pair styles use them to avoid double
computation of the I-J interaction between two atoms.

The only reason not to use atom IDs is if you are running an atomic simulation so large that IDs cannot be
uniquely assigned. For a default LAMMPS build this limit is 2”31 or about 2 billion atoms. However, even in this
case, you can use 64-bit atom IDs, allowing 263 or about 9e18 atoms, if you build LAMMPS with the -
DLAMMPS_BIGBIG switch. This is described in Section 2.2 of the manual. If atom IDs are not used, they must
be specified as O for all atoms, e.g. in a data or restart file.

The map keyword determines how atom ID lookup is done for molecular atom styles. Lookups are performed by
bond (angle, etc) routines in LAMMPS to find the local atom index associated with a global atom ID.

When the array value is used, each processor stores a lookup table of length N, where N is the largest atom ID in
the system. This is a fast, simple method for many simulations, but requires too much memory for large
simulations. The hash value uses a hash table to perform the lookups. This can be slightly slower than the array
method, but its memory cost is proportional to the number of atoms owned by a processor, i.e. N/P when N is the
total number of atoms in the system and P is the number of processors.

256

http://lammps.sandia.gov

When this setting is not specified in your input script, LAMMPS creates a map, if one is needed, as an array or
hash. See the discussion of default values below for how LAMMPS chooses which kind of map to build. Note
that atomic systems do not normally need to create a map. However, even in this case some LAMMPS commands
will create a map to find atoms (and then destroy it), or require a permanent map. An example of the former is the
velocity loop all command, which uses a map when looping over all atoms and insuring the same velocity values
are assigned to an atom ID, no matter which processor owns it.

The first keyword allows a group to be specified whose atoms will be maintained as the first atoms in each
processor's list of owned atoms. This in only useful when the specified group is a small fraction of all the atoms,
and there are other operations LAMMPS is performing that will be sped-up significantly by being able to loop
over the smaller set of atoms. Otherwise the reordering required by this option will be a net slow-down. The
neigh_modify include and communicate group commands are two examples of commands that require this setting
to work efficiently. Several fixes, most notably time integration fixes like fix nve, also take advantage of this
setting if the group they operate on is the group specified by this command. Note that specifying "all" as the
group-ID effectively turns off the first option.

It is OK to use the first keyword with a group that has not yet been defined, e.g. to use the atom_modify first
command at the beginning of your input script. LAMMPS does not use the group until a simullation is run.

The sort keyword turns on a spatial sorting or reordering of atoms within each processor's sub-domain every
Nfreq timesteps. If Nfreq is set to 0, then sorting is turned off. Sorting can improve cache performance and thus
speed-up a LAMMPS simulation, as discussed in a paper by (Meloni). Its efficacy depends on the problem size
(atoms/processor), how quickly the system becomes disordered, and various other factors. As a general rule,
sorting is typically more effective at speeding up simulations of liquids as opposed to solids. In tests we have
done, the speed-up can range from zero to 3-4x.

Reordering is peformed every Nfreq timesteps during a dynamics run or iterations during a minimization. More
precisely, reordering occurs at the first reneighboring that occurs after the target timestep. The reordering is
performed locally by each processor, using bins of the specified binsize. If binsize is set to 0.0, then a binsize
equal to half the neighbor cutoff distance (force cutoff plus skin distance) is used, which is a reasonable value.
After the atoms have been binned, they are reordered so that atoms in the same bin are adjacent to each other in
the processor's 1d list of atoms.

The goal of this procedure is for atoms to put atoms close to each other in the processor's one-dimensional list of
atoms that are also near to each other spatially. This can improve cache performance when pairwise intereractions
and neighbor lists are computed. Note that if bins are too small, there will be few atoms/bin. Likewise if bins are
too large, there will be many atoms/bin. In both cases, the goal of cache locality will be undermined.

IMPORTANT NOTE: Running a simulation with sorting on versus off should not change the simulation results in
a statistical sense. However, a different ordering will induce round-off differences, which will lead to diverging
trajectories over time when comparing two simluations. Various commands, particularly those which use random
numbers (e.g. velocity create, and fix langevin), may generate (statistically identical) results which depend on the
order in which atoms are processed. The order of atoms in a dump file will also typically change if sorting is
enabled.

Restrictions:

The first and sort options cannot be used together. Since sorting is on by default, it will be turned off if the first
keyword is used with a group-ID that is not "all".

Related commands: none

257

Default:

By default, id is yes. By default, atomic systems (no bond topology info) do not use a map. For molecular systems
(with bond topology info), a map is used. The default map style is array if no atom ID is larger than 1 million,
otherwise the default is hash. By default, a "first" group is not defined. By default, sorting is enabled with a
frequency of 1000 and a binsize of 0.0, which means the neighbor cutoff will be used to set the bin size.

(Meloni) Meloni, Rosati and Colombo, J Chem Phys, 126, 121102 (2007).

258

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

atom_style command

Syntax:
atom_style style args

e style = angle or atomic or body or bond or charge or dipole or electron or ellipsoid or full or line or meso
or molecular or peri or sphere or tri or template or hybrid

args = none for any style except body and hybrid
body args = bstyle bstyle—-args
bstyle = style of body particles
bstyle-args = additional arguments specific to the bstyle
see the body doc page for details
template args = template—-ID

template-ID = ID of molecule template specified in a separate molecule command
hybrid args = list of one or more sub-styles, each with their args
Examples:

atom_style atomic

atom_style bond

atom_style full

atom_style body nparticle 2 10

atom_style hybrid charge bond

atom_style hybrid charge body nparticle 2 5
atom_style template myMols

Description:

Define what style of atoms to use in a simulation. This determines what attributes are associated with the atoms.
This command must be used before a simulation is setup via a read_data, read_restart, or create_box command.

Once a style is assigned, it cannot be changed, so use a style general enough to encompass all attributes. E.g. with
style bond, angular terms cannot be used or added later to the model. It is OK to use a style more general than
needed, though it may be slightly inefficient.

The choice of style affects what quantities are stored by each atom, what quantities are communicated between
processors to enable forces to be computed, and what quantities are listed in the data file read by the read_data
command.

These are the additional attributes of each style and the typical kinds of physical systems they are used to model.
All styles store coordinates, velocities, atom IDs and types. See the read_data, create_atoms, and set commands
for info on how to set these various quantities.

angle bonds and angles bead-spring polymers with stiffness
atomic only the default values coarse-grain liquids, solids, metals
body mass, inertia moments, quaternion, angular momentum |arbitrary bodies

bond bonds bead-spring polymers

charge charge atomic system with charges

dipole charge and dipole moment system with dipolar particles

259

http://lammps.sandia.gov

electron |charge and spin and eradius electronic force field

ellipsoid |shape, quaternion, angular momentum aspherical particles

\full molecular + charge bio-molecules

line end points, angular velocity rigid bodies

meso rho, e, cv SPH particles

molecular |bonds, angles, dihedrals, impropers uncharged molecules

peri mass, volume mesocopic Peridynamic models
sphere diameter, mass, angular velocity granular models

template |template index, template atom small molecules with fixed topology
tri corner points, angular momentum rigid bodies

wavepacket |charge, spin, eradius, etag, cs_re, cs_im AWPMD

IMPORTANT NOTE: It is possible to add some attributes, such as a molecule ID, to atom styles that do not have
them via the fix property/atom command. This command also allows new custom attributes consisting of extra
integer or floating-point values to be added to atoms. See the fix property/atom doc page for examples of cases
where this is useful and details on how to initialize, access, and output the custom values.

All of the above styles define point particles, except the sphere, ellipsoid, electron, peri, wavepacket, line, tri, and
body styles, which define finite-size particles. See Section_howto 14 for an overview of using finite-size particle
models with LAMMPS.

All of the point-particle styles assign mass to particles on a per-type basis, using the mass command, The
finite-size particle styles assign mass to individual particles on a per-particle basis.

For the sphere style, the particles are spheres and each stores a per-particle diameter and mass. If the diameter >
0.0, the particle is a finite-size sphere. If the diameter = 0.0, it is a point particle.

For the ellipsoid style, the particles are ellipsoids and each stores a flag which indicates whether it is a finite-size
ellipsoid or a point particle. If it is an ellipsoid, it also stores a shape vector with the 3 diamters of the ellipsoid

and a quaternion 4-vector with its orientation.

For the electron style, the particles representing electrons are 3d Gaussians with a specified position and
bandwidth or uncertainty in position, which is represented by the eradius = electron size.

For the peri style, the particles are spherical and each stores a per-particle mass and volume.

The meso style is for smoothed particle hydrodynamics (SPH) particles which store a density (rho), energy (e),
and heat capacity (cv).

The wavepacket style is similar to electron, but the electrons may consist of several Gaussian wave packets,
summed up with coefficients cs= (cs_re,cs_im). Each of the wave packets is treated as a separate particle in

LAMMPS, wave packets belonging to the same electron must have identical efag values.

For the line style, the particles are idealized line segments and each stores a per-particle mass and length and
orientation (i.e. the end points of the line segment).

For the tri style, the particles are planar triangles and each stores a per-particle mass and size and orientation (i.e.
the corner points of the triangle).

The template style allows molecular topolgy (bonds,angles,etc) to be defined via a molecule template using the
molecule command. The template stores one or more molecules with a single copy of the topology info

260

(bonds,angles,etc) of each. Individual atoms only store a template index and template atom to identify which
molecule and which atom-within-the-molecule they represent. Using the femplate style instead of the bond, angle,
molecular styles can save memory for systems comprised of a large number of small molecules, all of a single
type (or small number of types). See the paper by Grime and Voth, in (Grime), for examples of how this can be
advantageous for large-scale coarse-grained systems.

IMPORTANT NOTE: When using the template style with a molecule template that contains multiple molecules,
you should insure the atom types, bond types, angle_types, etc in all the molecules are consistent. E.g. if one
molecule represents H20 and another CO2, then you probably do not want each molecule file to define 2 atom
types and a single bond type, because they will conflict with each other when a mixture system of H20 and CO2
molecules is defined, e.g. by the read_data command. Rather the H20 molecule should define atom types 1 and 2,
and bond type 1. And the CO2 molecule should define atom types 3 and 4 (or atom types 3 and 2 if a single
oxygen type is desired), and bond type 2.

For the body style, the particles are arbitrary bodies with internal attributes defined by the "style" of the bodies,
which is specified by the bstyle argument. Body particles can represent complex entities, such as surface meshes
of discrete points, collections of sub-particles, deformable objects, etc.

The body doc page descibes the body styles LAMMPS currently supports, and provides more details as to the
kind of body particles they represent. For all styles, each body particle stores moments of inertia and a quaternion
4-vector, so that its orientation and position can be time integrated due to forces and torques.

Note that there may be additional arguments required along with the bstyle specification, in the atom_style body
command. These arguments are described in the body doc page.

Typically, simulations require only a single (non-hybrid) atom style. If some atoms in the simulation do not have
all the properties defined by a particular style, use the simplest style that defines all the needed properties by any
atom. For example, if some atoms in a simulation are charged, but others are not, use the charge style. If some
atoms have bonds, but others do not, use the bond style.

The only scenario where the hybrid style is needed is if there is no single style which defines all needed properties
of all atoms. For example, if you want dipolar particles which will rotate due to torque, you would need to use
"atom_style hybrid sphere dipole". When a hybrid style is used, atoms store and communicate the union of all
quantities implied by the individual styles.

When using the hybrid style, you cannot combine the template style with another molecular style that stores
bond,angle,etc info on a per-atom basis.

LAMMPS can be extended with new atom styles as well as new body styles; see this section.
Restrictions:
This command cannot be used after the simulation box is defined by a read_data or create_box command.

The angle, bond, full, molecular, and template styles are part of the MOLECULAR package. The line and tri
styles are part of the ASPHERE pacakge. The body style is part of the BODY package. The dipole style is part of
the DIPOLE package. The peri style is part of the PERI package for Peridynamics. The electron style is part of
the USER-EFF package for electronic force fields. The meso style is part of the USER-SPH package for
smoothed particle hydrodyanmics (SPH). See this PDF guide to using SPH in LAMMPS. The wavepacket style is
part of the USER-AWPMD package for the antisymmetrized wave packet MD method. They are only enabled if
LAMMPS was built with that package. See the Making LAMMPS section for more info.

261

Related commands:
read_data, pair_style
Default:

atom_style atomic

(Grime) Grime and Voth, to appear in J] Chem Theory & Computation (2014).

262

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

balance command
Syntax:
balance keyword args

® one or more keyword/arg pairs may be appended
® keyword = x or y or z or dynamic or out

x args = uniform or Px-1 numbers between 0 and 1
uniform = evenly spaced cuts between processors in x dimension
numbers = Px-1 ascending values between 0 and 1, Px - # of processors in x dimension
y args = uniform or Py-1 numbers between 0 and 1
uniform = evenly spaced cuts between processors in y dimension
numbers = Py-1 ascending values between 0 and 1, Py - # of processors in y dimension
z args = uniform or Pz-1 numbers between 0 and 1
uniform = evenly spaced cuts between processors in z dimension
numbers = Pz-1 ascending values between 0 and 1, Pz - # of processors in z dimension
dynamic args = dimstr Niter thresh
dimstr = sequence of letters containing "x" or "y" or "z", each not more than once
Niter = # of times to iterate within each dimension of dimstr sequence
thresh = stop balancing when this imbalance threshhold is reached
out arg = filename
filename = output file to write each processor's sub-domain to
Examples:

balance x uniform y 0.4 0.5 0.6
balance dynamic xz 5 1.1
balance dynamic x 20 1.0 out tmp.balance

Description:

This command adjusts the size of processor sub-domains within the simulation box, to attempt to balance the
number of particles and thus the computational cost (load) evenly across processors. The load balancing is "static"
in the sense that this command performs the balancing once, before or between simulations. The processor
sub-domains will then remain static during the subsequent run. To perform "dynamic" balancing, see the fix
balance command, which can adjust processor sub-domain sizes on-the-fly during a run.

Load-balancing is only useful if the particles in the simulation box have a spatially-varying density distribution.
E.g. a model of a vapor/liquid interface, or a solid with an irregular-shaped geometry containing void regions. In
this case, the LAMMPS default of dividing the simulation box volume into a regular-spaced grid of processor
sub-domain, with one equal-volume sub-domain per procesor, may assign very different numbers of particles per
processor. This can lead to poor performance in a scalability sense, when the simulation is run in parallel.

Note that the processors command gives you control over how the box volume is split across processors.
Specifically, for a Px by Py by Pz grid of processors, it chooses or lets you choose Px, Py, and Pz, subject to the
constraint that Px * Py * Pz = P, the total number of processors. This is sufficient to achieve good load-balance
for many models on many processor counts. However, all the processor sub-domains will still be the same shape
and have the same volume.

This command does not alter the topology of the Px by Py by Pz grid or processors. But it shifts the cutting planes
between processors (in 3d, or lines in 2d), which adjusts the volume (area in 2d) assigned to each processor, as in

263

http://lammps.sandia.gov

the following 2d diagram. The left diagram is the default partitioning of the simulation box across processors (one
sub-box for each of 16 processors); the right diagram is after balancing.

% e¢_o %o

- @ PRt
X @ Fa W LL o
e®eo o0 & e®e o0

When the balance command completes, it prints out the final positions of all cutting planes in each of the 3
dimensions (as fractions of the box length). It also prints statistics about its results, including the change in
"imbalance factor". This factor is defined as the maximum number of particles owned by any processor, divided
by the average number of particles per processor. Thus an imbalance factor of 1.0 is perfect balance. For 10000
particles running on 10 processors, if the most heavily loaded processor has 1200 particles, then the factor is 1.2,
meaning there is a 20% imbalance. The change in the maximum number of particles (on any processor) is also
printed.

IMPORTANT NOTE: This command attempts to minimize the imbalance factor, as defined above. But because
of the topology constraint that only the cutting planes (lines) between processors are moved, there are many
irregular distributions of particles, where this factor cannot be shrunk to 1.0, particuarly in 3d. Also,
computational cost is not strictly proportional to particle count, and changing the relative size and shape of
processor sub-domains may lead to additional computational and communication overheads, e.g. in the PPPM
solver used via the kspace_style command. Thus you should benchmark the run times of your simulation before
and after balancing.

The x, y, and z keywords adjust the position of cutting planes between processor sub-domains in a specific
dimension. The uniform argument spaces the planes evenly, as in the left diagram above. The numeric argument
requires you to list Ps-1 numbers that specify the position of the cutting planes. This requires that you know Ps =
Px or Py or Pz = the number of processors assigned by LAMMPS to the relevant dimension. This assignment is
made (and the Px, Py, Pz values printed out) when the simulation box is created by the "create_box" or
"read_data" or "read_restart" command and is influenced by the settings of the "processors" command.

Each of the numeric values must be between 0 and 1, and they must be listed in ascending order. They represent
the fractional position of the cutting place. The left (or lower) edge of the box is 0.0, and the right (or upper) edge
is 1.0. Neither of these values is specified. Only the interior Ps-1 positions are specified. Thus is there are 2
procesors in the x dimension, you specify a single value such as 0.75, which would make the left processor's
sub-domain 3x larger than the right processor's sub-domain.

The dynamic keyword changes the cutting planes between processors in an iterative fashion, seeking to reduce the
imbalance factor, similar to how the fix balance command operates. Note that this keyword begins its operation
from the current processor partitioning, which could be uniform or the result of a previous balance command.

non non n_n

The dimstr argument is a string of characters, each of which must be an "x" or "y" or "z". Eacn character can

264

appear zero or one time, since there is no advantage to balancing on a dimension more than once. You should
normally only list dimensions where you expect there to be a density variation in the particles.

Balancing proceeds by adjusting the cutting planes in each of the dimensions listed in dimstr, one dimension at a
time. For a single dimension, the balancing operation (described below) is iterated on up to Niter times. After
each dimension finishes, the imbalance factor is re-computed, and the balancing operation halts if the thresh
criterion is met.

A rebalance operation in a single dimension is performed using a recursive multisectioning algorithm, where the
position of each cutting plane (line in 2d) in the dimension is adjusted independently. This is similar to a recursive
bisectioning (RCB) for a single value, except that the bounds used for each bisectioning take advantage of
information from neighboring cuts if possible. At each iteration, the count of particles on either side of each plane
is tallied. If the counts do not match the target value for the plane, the position of the cut is adjusted to be halfway
between a low and high bound. The low and high bounds are adjusted on each iteration, using new count
information, so that they become closer together over time. Thus as the recustion progresses, the count of particles
on either side of the plane gets closer to the target value.

Once the rebalancing is complete and final processor sub-domains assigned, particles are migrated to their new
owning processor, and the balance procedure ends.

IMPORTANT NOTE: At each rebalance operation, the RCB for each cutting plane (line in 2d) typcially starts
with low and high bounds separated by the extent of a processor's sub-domain in one dimension. The size of this
bracketing region shrinks by 1/2 every iteration. Thus if Niter is specified as 10, the cutting plane will typically be
positioned to 1 part in 1000 accuracy (relative to the perfect target position). For Niter = 20, it will be accurate to
1 part in a million. Tus there is no need ot set Niter to a large value. LAMMPS will check if the threshold
accuracy is reached (in a dimension) is less iterations than Niter and exit early. However, Niter should also not be
set too small, since it will take roughly the same number of iterations to converge even if the cutting plane is
initially close to the target value.

IMPORTANT NOTE: If a portion of your system is a perfect lattice, e.g. the intiial system is generated by the
create_atoms command, then the balancer may be unable to achieve exact balance. I.e. entire lattice planes will be
owned or not owned by a single processor. So you you should not expect to achieve perfect balance in this case.

The out keyword writes a text file to the specified filename with the results of the balancing operation. The file
contains the bounds of the sub-domain for each processor after the balancing operation completes. The format of
the file is compatible with the Pizza.py mdump tool which has support for manipulating and visualizing mesh
files. An example is shown here for a balancing by 4 processors for a 2d problem:

ITEM: TIMESTEP

0

ITEM: NUMBER OF SQUARES
4

ITEM: SQUARES
11127%
222387
333498

4 4 45 10 9

ITEM: TIMESTEP

0

ITEM: NUMBER OF NODES
10

ITEM: BOX BOUNDS
-153.919 184.703

0 15.3919
-0.769595 0.769595
ITEM: NODES

265

-153.919 0 0
7.45545 0 O
14.7305 0 O

22.667 0 0

184.703 0 O
-153.919 15.3919 0
7.45545 15.3919 0
14.7305 15.3919 0
22.667 15.3919 0

0 1 184.703 15.3919 0

I e T T T = SN S SR Y

The "SQUARES" lists the node IDs of the 4 vertices in a rectangle for each processor (1 to 4). The first SQUARE
1 (for processor 0) is a rectangle of type 1 (equal to SQUARE ID) and contains vertices 1,2,7,6. The coordinates
of all the vertices are listed in the NODES section. Note that the 4 sub-domains share vertices, so there are only
10 unique vertices in total.

For a 3d problem, the syntax is similar with "SQUARES" replaced by "CUBES", and 8 vertices listed for each
processor, instead of 4.

Restrictions:

The dynamic keyword cannot be used with the x, y, or z arguments.

For 2d simulations, the z keyword cannot be used. Nor can a "z" appear in dimstr for the dynamic keyword.
Related commands:

processors, fix balance

Default: none

266

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

Body particles
Overview:

This doc page is not about a LAMMPS input script command, but about body particles, which are generalized
finite-size particles. Individual body particles can represent complex entities, such as surface meshes of discrete
points, collections of sub-particles, deformable objects, etc. Note that other kinds of finite-size spherical and
aspherical particles are also supported by LAMMPS, such as spheres, ellipsoids, line segments, and triangles, but
they are simpler entities that body particles. See Section_howto 14 for a general overview of all these particle

types.

Body particles are used via the atom_style body command. It takes a body style as an argument. The current body
styles supported by LAMMPS are as follows. The name in the first column is used as the bstyle argument for the
atom_style body command.

lnparticle rigid body with N sub-particles
The body style determines what attributes are stored for each body and thus how they can be used to compute
pairwise body/body or bond/non-body (point particle) interactions. More details of each style are described
below.

We hope to add more styles in the future. See Section_modify 12 for details on how to add a new body style to
the code.

When to use body particles:

You should not use body particles to model a rigid body made of simpler particles (e.g. point, sphere, ellipsoid,
line segment, triangular particles), if the interaction between pairs of rigid bodies is just the summation of
pairwise interactions between the simpler particles. LAMMPS already supports this kind of model via the fix rigid
command. Any of the numerous pair styles that compute interactions between simpler particles can be used. The
fix rigid command time integrates the motion of the rigid bodies. All of the standard LAMMPS commands for
thermostatting, adding constraints, performing output, etc will operate as expected on the simple particles.

By contrast, when body particles are used, LAMMPS treats an entire body as a single particle for purposes of
computing pairwise interactions, building neighbor lists, migrating particles between processors, outputting
particles to a dump file, etc. This means that interactions between pairs of bodies or between a body and non-body
(point) particle need to be encoded in an appropriate pair style. If such a pair style were to mimic the fix rigid
model, it would need to loop over the entire collection of interactions between pairs of simple particles within the
two bodies, each time a single body/body interaction was computed.

Thus it only makes sense to use body particles and develop such a pair style, when particle/particle interactions
are more complex than what the fix rigid command can already calculate. For example, if particles have one or
more of the following attributes:

¢ represented by a surface mesh

¢ represented by a collection of geometric entities (e.g. planes + spheres)
¢ deformable

¢ internal stress that induces fragmentation

then the interaction between pairs of particles is likely to be more complex than the summation of simple
sub-particle interactions. An example is contact or frictional forces between particles with planar sufaces that

267

http://lammps.sandia.gov

inter-penetrate.

These are additional LAMMPS commands that can be used with body particles of different styles

fix nve/body integrate motion of a body particle

compute body/local [store sub-particle attributes of a body particle

dump local output sub-particle attributes of a body particle

The pair styles defined for use with specific body styles are listed in the sections below.

Specifics of body style nparticle:

The nparticle body style represents body particles as a rigid body with a variable number N of sub-particles. It is
provided as a vanillia, prototypical example of a body particle, although as mentioned above, the fix rigid
command already duplicates its functionality.

The atom_style body command for this body style takes two additional arguments:

atom_style body nparticle Nmin Nmax
Nmin = minimum # of sub-particles in any body in the system
Nmax = maximum # of sub-particles in any body in the system

The Nmin and Nmax arguments are used to bound the size of data structures used internally by each particle.

When the read_data command reads a data file for this body style, the following information must be provided for
each entry in the Bodies section of the data file:

atom-ID 1 M
N
ixx iyy izz ixy ixz iyz x1 yl zl ...

. XN yN zN

N is the number of sub-particles in the body particle. M = 6 + 3*N. The integer line has a single value N. The
floating point line(s) list 6 moments of inertia followed by the coordinates of the N sub-particles (x1 to zN) as 3N
values on as many lines as required. Note that this in not N lines, but 10 values per line; see the read_data
command for details. The 6 moments of inertia (ixx,1yy,izz,ixy,ixz,iyz) should be the values consistent with the
current orientation of the rigid body around its center of mass. The values are with respect to the simulation box
XYZ axes, not with respect to the prinicpal axes of the rigid body itself. LAMMPS performs the latter calculation
internally. The coordinates of each sub-particle are specified as its x,y,z displacement from the center-of-mass of
the body particle. The center-of-mass position of the particle is specified by the x,y,z values in the Atoms section
of the data file.

The pair_style body command can be used with this body style to compute body/body and body/non-body
interactions.

For output purposes via the compute body/local and dump local commands, this body style produces one datum
for each of the N sub-particles in a body particle. The datum has 3 values:

1 = x position of sub-particle
2 = y position of sub-particle
3 = z position of sub-particle

These values are the current position of the sub-particle within the simulation domain, not a displacement from
the center-of-mass (COM) of the body particle itself. These values are calculated using the current COM and

268

orientiation of the body particle.

269

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

bond_style class2 command

bond_style class2/omp command
Syntax:
bond_style class2

Examples:

bond_style class2
bond_coeff 1 1.0 100.0 80.0 80.0

Description:

The class2 bond style uses the potential
Y Tifin . Y2 R iR)3 Rl PR Y
E —]\2(/ —10) +1&3(/ _'U) ’i"[\‘;(l —10)

where 10 is the equilibrium bond distance.
See (Sun) for a description of the COMPASS class2 force field.

The following coefficients must be defined for each bond type via the bond_coeff command as in the example
above, or in the data file or restart files read by the read_data or read_restart commands:

e RO (distance)

e K2 (energy/distance”2)
¢ K3 (energy/distance”3)
¢ K4 (energy/distance”4)

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the suffix.
They have been optimized to run faster, depending on your available hardware, as discussed in Section_accelerate
of the manual. The accelerated styles take the same arguments and should produce the same results, except for
round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively. They
are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the
-suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your input

script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

270

http://lammps.sandia.gov

This bond style can only be used if LAMMPS was built with the CLASS2 package. See the Making LAMMPS
section for more info on packages.

Related commands:
bond_coeff, delete_bonds

Default: none

(Sun) Sun, J Phys Chem B 102, 7338-7364 (1998).

271

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

bond_coeff command

Syntax:
bond_coeff N args

¢ N = bond type (see asterisk form below)
e args = coefficients for one or more bond types

Examples:

bond_coeff 5 80.0 1.2

bond_coeff * 30.0 1.5 1
bond_coeff 1*4 30.0 1.5
bond_coeff 1 harmonic 2

0 1.
1.0
0.0

e o

.0
0 .0

Description:

Specify the bond force field coefficients for one or more bond types. The number and meaning of the coefficients
depends on the bond style. Bond coefficients can also be set in the data file read by the read_data command or in
a restart file.

N can be specified in one of two ways. An explicit numeric value can be used, as in the 1st example above. Or a
wild-card asterisk can be used to set the coefficients for multiple bond types. This takes the form "*" or "*n" or
"n*" or "m*n". If N = the number of bond types, then an asterisk with no numeric values means all types from 1
to N. A leading asterisk means all types from 1 to n (inclusive). A trailing asterisk means all types from n to N
(inclusive). A middle asterisk means all types from m to n (inclusive).

Note that using a bond_coeff command can override a previous setting for the same bond type. For example,
these commands set the coeffs for all bond types, then overwrite the coeffs for just bond type 2:

bond_coeff * 100.0 1.2
bond_coeff 2 200.0 1.2

A line in a data file that specifies bond coefficients uses the exact same format as the arguments of the bond_coeff
command in an input script, except that wild-card asterisks should not be used since coefficients for all N types
must be listed in the file. For example, under the "Bond Coeffs" section of a data file, the line that corresponds to
the 1st example above would be listed as

580.0 1.2

Here is an alphabetic list of bond styles defined in LAMMPS. Click on the style to display the formula it
computes and coefficients specified by the associated bond_coeff command.

Note that here are also additional bond styles submitted by users which are included in the LAMMPS distribution.
The list of these with links to the individual styles are given in the bond section of this page.

¢ bond_style none - turn off bonded interactions
® bond_style hybrid - define multiple styles of bond interactions

¢ bond_style class2 - COMPASS (class 2) bond

272

http://lammps.sandia.gov

¢ bond_style fene - FENE (finite-extensible non-linear elastic) bond
¢ bond_style fene/expand - FENE bonds with variable size particles
¢ bond_style harmonic - harmonic bond

¢ bond_style morse - Morse bond

¢ bond_style nonlinear - nonlinear bond

¢ bond_style quartic - breakable quartic bond

¢ bond_style table - tabulated by bond length

Restrictions:

This command must come after the simulation box is defined by a read_data, read_restart, or create_box
command.

A bond style must be defined before any bond coefficients are set, either in the input script or in a data file.
Related commands:
bond_style

Default: none

273

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

bond_style fene command

bond_style fene/omp command
Syntax:

bond_style fene

Examples:

bond_style fene
bond_coeff 1 30.0 1.5 1.0 1.0

Description:

The fene bond style uses the potential

N2 12 6
Ez—llﬁffﬁgln l_(g;_) + 4e (g) —(E) + €

0 T

to define a finite extensible nonlinear elastic (FENE) potential (Kremer), used for bead-spring polymer models.
The first term is attractive, the 2nd Lennard-Jones term is repulsive. The first term extends to RO, the maximum
extent of the bond. The 2nd term is cutoff at 2°(1/6) sigma, the minimum of the LJ potential.

The following coefficients must be defined for each bond type via the bond_coeff command as in the example
above, or in the data file or restart files read by the read_data or read_restart commands:

¢ K (energy/distance”2)
¢ RO (distance)

e epsilon (energy)

® sigma (distance)

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the suffix.
They have been optimized to run faster, depending on your available hardware, as discussed in Section_accelerate
of the manual. The accelerated styles take the same arguments and should produce the same results, except for
round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively. They
are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the
-suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your input

script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

274

http://lammps.sandia.gov

Restrictions:

This bond style can only be used if LAMMPS was built with the MOLECULAR package (which it is by default).
See the Making LAMMPS section for more info on packages.

You typically should specify special_bonds fene or special_bonds lj/coul 0 1 1 to use this bond style. LAMMPS
will issue a warning it that's not the case.

Related commands:
bond_coeff, delete_bonds

Default: none

(Kremer) Kremer, Grest,] Chem Phys, 92, 5057 (1990).

275

E=—-05KR;In |1 —

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

bond_style fene/expand command

bond_style fene/expand/omp command

Syntax:

bond_style fene/expand

Examples:

bond_style fene/expand
bond_coeff 1 30.0 1.5 1.0 1.0 0.5

Description:

The fene/expand bond style uses the potential

(r—A)* ; o 2 o
R)| T \e=a (r—A)

to define a finite extensible nonlinear elastic (FENE) potential (Kremer), used for bead-spring polymer models.
The first term is attractive, the 2nd Lennard-Jones term is repulsive.

The fene/expand bond style is similar to fene except that an extra shift factor of delta (positive or negative) is
added to r to effectively change the bead size of the bonded atoms. The first term now extends to RO + delta and
the 2nd term is cutoff at 2”(1/6) sigma + delta.

The following coefficients must be defined for each bond type via the bond_coeff command as in the example
above, or in the data file or restart files read by the read_data or read_restart commands:

¢ K (energy/distance”2)
¢ RO (distance)

e epsilon (energy)

¢ sigma (distance)

e delta (distance)

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the suffix.
They have been optimized to run faster, depending on your available hardware, as discussed in Section_accelerate
of the manual. The accelerated styles take the same arguments and should produce the same results, except for
round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively. They
are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for more info.

276

=

http://lammps.sandia.gov

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the
-suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your input
script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This bond style can only be used if LAMMPS was built with the MOLECULAR package (which it is by default).
See the Making LAMMPS section for more info on packages.

You typically should specify special_bonds fene or special_bonds lj/coul 0 1 1 to use this bond style. LAMMPS
will issue a warning it that's not the case.

Related commands:
bond_coeff, delete_bonds

Default: none

(Kremer) Kremer, Grest,] Chem Phys, 92, 5057 (1990).

277

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

bond_style harmonic command

bond_style harmonic/omp command
Syntax:
bond_style harmonic

Examples:

bond_style harmonic
bond_coeff 5 80.0 1.2

Description:

The harmonic bond style uses the potential

2
E = K(r —)
where 10 is the equilibrium bond distance. Note that the usual 1/2 factor is included in K.

The following coefficients must be defined for each bond type via the bond_coeff command as in the example
above, or in the data file or restart files read by the read_data or read_restart commands:

¢ K (energy/distance”?2)
¢ 10 (distance)

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the suffix.
They have been optimized to run faster, depending on your available hardware, as discussed in Section_accelerate
of the manual. The accelerated styles take the same arguments and should produce the same results, except for
round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively. They
are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the
-suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your input

script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This bond style can only be used if LAMMPS was built with the MOLECULAR package (which it is by default).
See the Making LAMMPS section for more info on packages.

Related commands:

278

http://lammps.sandia.gov

bond_coeff, delete_bonds

Default: none

279

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

bond_style harmonic/shift command

bond_style harmonic/shift/omp command
Syntax:
bond_style harmonic/shift

Examples:

bond_style harmonic/shift
bond_coeff 5 10.0 0.5 1.0

Description:

The harmonic/shift bond style is a shifted harmonic bond that uses the potential

Umain " 9
B = UM~ (rem o]

(ro— 1)

where r0 is the equilibrium bond distance, and rc the critical distance. The potential is -Umin at rQ and zero at rc.
The spring constant is k = Umin / [2 (rO-rc)*2].

The following coefficients must be defined for each bond type via the bond_coeff command as in the example
above, or in the data file or restart files read by the read_data or read_restart commands:

¢ Umin (energy)
¢ 10 (distance)

¢ rc (distance)

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the suffix.
They have been optimized to run faster, depending on your available hardware, as discussed in Section_accelerate
of the manual. The accelerated styles take the same arguments and should produce the same results, except for
round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively. They
are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the
-suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your input

script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

280

http://lammps.sandia.gov

This bond style can only be used if LAMMPS was built with the USER-MISC package. See the Making
LAMMPS section for more info on packages.

Related commands:
bond_coeff, delete_bonds, bond_harmonic

Default: none

281

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

bond_style harmonic/shift/cut command

bond_style harmonic/shift/cut/omp command
Syntax:
bond_style harmonic/shift/cut

Examples:

bond_style harmonic/shift/cut
bond_coeff 5 10.0 0.5 1.0

Description:
The harmonic/shift/cut bond style is a shifted harmonic bond that uses the potential
Uman

b (ro — 1c)? [(' —10)” — (re — 7'0)2]

where r0 is the equilibrium bond distance, and rc the critical distance. The bond potential is zero for distances r >
rc. The potential is -Umin at r0 and zero at rc. The spring constant is k = Umin / [2 (10-rc)"2].

The following coefficients must be defined for each bond type via the bond_coeff command as in the example
above, or in the data file or restart files read by the read_data or read_restart commands:

¢ Umin (energy)
¢ 10 (distance)
e rc (distance)

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the suffix.
They have been optimized to run faster, depending on your available hardware, as discussed in Section_accelerate
of the manual. The accelerated styles take the same arguments and should produce the same results, except for
round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively. They
are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the
-suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your input

script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

282

http://lammps.sandia.gov

This bond style can only be used if LAMMPS was built with the USER-MISC package. See the Making
LAMMPS section for more info on packages.

Related commands:
bond_coeff, delete_bonds, bond_harmonic, bond_harmonicshift

Default: none

283

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

bond_style hybrid command

Syntax:
bond_style hybrid stylel style2 ...
e stylel,style2 = list of one or more bond styles

Examples:

bond_style hybrid harmonic fene
bond_coeff 1 harmonic 80.0 1.2
bond_coeff 2* fene 30.0 1.5 1.0 1.0

Description:

The hybrid style enables the use of multiple bond styles in one simulation. A bond style is assigned to each bond
type. For example, bonds in a polymer flow (of bond type 1) could be computed with a fene potential and bonds
in the wall boundary (of bond type 2) could be computed with a harmonic potential. The assignment of bond type
to style is made via the bond_coeff command or in the data file.

In the bond_coeff commands, the name of a bond style must be added after the bond type, with the remaining
coefficients being those appropriate to that style. In the example above, the 2 bond_coeff commands set bonds of
bond type 1 to be computed with a harmonic potential with coefficients 80.0, 1.2 for K, r0. All other bond types
(2-N) are computed with a fene potential with coefficients 30.0, 1.5, 1.0, 1.0 for K, RO, epsilon, sigma.

If bond coefficients are specified in the data file read via the read_data command, then the same rule applies. E.g.
"harmonic" or "fene" must be added after the bond type, for each line in the "Bond Coeffs" section, e.g.

Bond Coeffs

1 harmonic 80.

0 2
2 fene 30.0 1.5 0

1.
1.0 1.0

A bond style of none with no additional coefficients can be used in place of a bond style, either in a input script
bond_coeff command or in the data file, if you desire to turn off interactions for specific bond types.

Restrictions:

This bond style can only be used if LAMMPS was built with the MOLECULAR package (which it is by default).
See the Making LAMMPS section for more info on packages.

Unlike other bond styles, the hybrid bond style does not store bond coefficient info for individual sub-styles in a
binary restart files. Thus when retarting a simulation from a restart file, you need to re-specify bond_coeff
commands.

Related commands:

bond_coeff, delete_bonds

284

http://lammps.sandia.gov

Default: none

285

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

bond_style morse command

bond_style morse/omp command
Syntax:
bond_style morse

Examples:

bond_style morse
bond_coeff 5 1.0 2.0 1.2

Description:

The morse bond style uses the potential

BE=D|1— e—a(r—ro) 2

where 10 is the equilibrium bond distance, alpha is a stiffness parameter, and D determines the depth of the
potential well.

The following coefficients must be defined for each bond type via the bond_coeff command as in the example
above, or in the data file or restart files read by the read_data or read_restart commands:

¢ D (energy)
¢ alpha (inverse distance)
¢ 10 (distance)

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the suffix.
They have been optimized to run faster, depending on your available hardware, as discussed in Section_accelerate
of the manual. The accelerated styles take the same arguments and should produce the same results, except for
round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively. They
are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the
-suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your input

script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This bond style can only be used if LAMMPS was built with the MOLECULAR package (which it is by default).
See the Making LAMMPS section for more info on packages.

286

http://lammps.sandia.gov

Related commands:
bond_coeff, delete_bonds

Default: none

287

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

bond_style nhone command
Syntax:

bond_style none

Examples:

bond_style none

Description:

Using a bond style of none means bond forces are not computed, even if pairs of bonded atoms were listed in the
data file read by the read_data command.

Restrictions: none
Related commands: none

Default: none

288

http://lammps.sandia.gov

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

bond_style nonlinear command

bond_style nonlinear/omp command
Syntax:
bond_style nonlinear

Examples:

bond_style nonlinear
bond_coeff 2 100.0 1.1 1.4

Description:

The nonlinear bond style uses the potential

e(r —rg)?

[A2— (17— 70)?]

T

to define an anharmonic spring (Rector) of equilibrium length r0 and maximum extension lamda.

The following coefficients must be defined for each bond type via the bond_coeff command as in the example
above, or in the data file or restart files read by the read_data or read_restart commands:

e epsilon (energy)
¢ 10 (distance)
¢ Jamda (distance)

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the suffix.
They have been optimized to run faster, depending on your available hardware, as discussed in Section_accelerate
of the manual. The accelerated styles take the same arguments and should produce the same results, except for
round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively. They
are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the
-suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your input

script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This bond style can only be used if LAMMPS was built with the MOLECULAR package (which it is by default).
See the Making LAMMPS section for more info on packages.

289

http://lammps.sandia.gov

Related commands:
bond_coeff, delete_bonds

Default: none

(Rector) Rector, Van Swol, Henderson, Molecular Physics, 82, 1009 (1994).

290

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

bond_style quartic command

bond_style quartic/omp command

Syntax:
bond_style quartic
Examples:

bond_style quartic
bond_coeff 2 1200 -0.55 0.25 1.3 34.6878

Description:

The qguartic bond style uses the potential

9 a 12 o §]
E = K(r— R)r - Re— B)(r — B — Ba) +Uo+4¢ | (2) "= (2) | +

r r

to define a bond that can be broken as the simulation proceeds (e.g. due to a polymer being stretched). The sigma
and epsilon used in the LJ portion of the formula are both set equal to 1.0 by LAMMPS.

The following coefficients must be defined for each bond type via the bond_coeff command as in the example
above, or in the data file or restart files read by the read_data or read_restart commands:

¢ K (energy/distance”4)
¢ B1 (distance)

¢ B2 (distance)

¢ Rc (distance)

¢ UO (energy)

This potential was constructed to mimic the FENE bond potential for coarse-grained polymer chains. When
monomers with sigma = epsilon = 1.0 are used, the following choice of parameters gives a quartic potential that
looks nearly like the FENE potential: K = 1200, B1 =-0.55, B2 = 0.25, Rc = 1.3, and UO = 34.6878. Different
parameters can be specified using the bond_coeff command, but you will need to choose them carefully so they
form a suitable bond potential.

Rc is the cutoff length at which the bond potential goes smoothly to a local maximum. If a bond length ever
becomes > Rc, LAMMPS "breaks" the bond, which means two things. First, the bond potential is turned off by
setting its type to 0, and is no longer computed. Second, a pairwise interaction between the two atoms is turned
on, since they are no longer bonded.

LAMMPS does the second task via a computational sleight-of-hand. It subtracts the pairwise interaction as part of
the bond computation. When the bond breaks, the subtraction stops. For this to work, the pairwise interaction
must always be computed by the pair_style command, whether the bond is broken or not. This means that
special_bonds must be set to 1,1,1, as indicated as a restriction below.

291

http://lammps.sandia.gov

Note that when bonds are dumped to a file via the dump local command, bonds with type O are not included. The
delete_bonds command can also be used to query the status of broken bonds or permanently delete them, e.g.:

delete_bonds all stats
delete_bonds all bond 0 remove

Styles with a cuda, gpu, omp, or opt suffix are functionally the same as the corresponding style without the suffix.
They have been optimized to run faster, depending on your available hardware, as discussed in Section_accelerate
of the manual. The accelerated styles take the same arguments and should produce the same results, except for
round-off and precision issues.

These accelerated styles are part of the USER-CUDA, GPU, USER-OMP and OPT packages, respectively. They
are only enabled if LAMMPS was built with those packages. See the Making LAMMPS section for more info.

You can specify the accelerated styles explicitly in your input script by including their suffix, or you can use the
-suffix command-line switch when you invoke LAMMPS, or you can use the suffix command in your input

script.

See Section_accelerate of the manual for more instructions on how to use the accelerated styles effectively.

Restrictions:

This bond style can only be used if LAMMPS was built with the MOLECULAR package (which it is by default).
See the Making LAMMPS section for more info on packages.

The quartic style requires that special_bonds parameters be set to 1,1,1. Three- and four-body interactions (angle,
dihedral, etc) cannot be used with guartic bonds.

Related commands:
bond_coeff, delete_bonds

Default: none

292

LAMMPS WWW Site - LAMMPS Documentation - LAMMPS Commands

bond_style command
Syntax:
bond_style style args

e style = none or hybrid or class2 or fene or fene/expand or harmonic or morse or nonlinear or quartic

args = none for any style except hybrid
hybrid args = list of one or more styles
Examples:

bond_style harmonic
bond_style fene
bond_style hybrid harmonic fene

Description:

Set the formula(s) LAMMPS uses to compute bond interactions between pairs of atoms. In LAMMPS, a bond
differs from a pairwise interaction, which are set via the pair_style command. Bonds are defined between
specified pairs of atoms and remain in force for the duration of the simulation (unless the bond breaks which is
possible in some bond potentials). The list of bonded atoms is read in by a read_data or read_restart command
from a data or restart file. By contrast, pair potentials are typically defined between all pairs of atoms within a
cutoff distance and the set of active interactions changes over time.

Hybrid models where bonds are computed using different bond potentials can be setup using the hybrid bond
style.

The coefficients associated with a bond style can be specified in a data or restart file or via the bond_coeff
command.

All bond potentials store their coefficient data in binary restart files which means bond_style and bond_coeff
commands do not need to be re-specified in an input script that restarts a simulation. See the read_restart
command for details on how to do this. The one exception is that bond_style sybrid only stores the list of
sub-styles in the restart file; bond coefficients need to be re-specified.

IMPORTANT NOTE: When both a bond and pair style is defined, the special_bonds command often needs to be
used to turn off (or weight) the pairwise interaction that would otherwise exist between 2 bonded atoms.

In the formulas listed for each bond style, r is the distance between the 2 atoms in the bond.

Here is an alphabetic list of bond styles defined in LAMMPS. Click on the style to display the formula it
computes and coefficients specified by the associated bond_coeff command.

Note that there are also additional bond styles submitted by users which are included in the LAMMPS
distribution. The list of these with links to the individual styles are given in the bond section of this page.

¢ bond_style none - turn off bonded interactions
® bond_style hybrid - define multiple styles of bond interactions

293

http://lammps.sandia.gov

¢ bond_style class2 - COMPASS (class 2) bond

¢ bond_style fene - FENE (finite-extensible non-linear elastic) bond
¢ bond_style fene/expand - FENE bonds with variable size particles
¢ bond_style harmonic - harmonic bond

¢ bond_style morse - Morse bond

¢ bond_style nonlinear - nonlinear bond

¢ bond_style quartic - breakable quartic bond

¢ bond_style table - tabulated by bond length

Restrictions:

Bond styles can only be set for atom styles that allow bonds to be defined.

Most bond styles are part of the MOLECULAR package. They are only enabled if LAMMPS was built with that
package. See the Making LAMMPS section for more info on packages. The doc pages for individual bond
potentials tell if it is part of a package.

Related commands:

